瘦子你好
有饭无范儿
(1)绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。(2)按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。(3)对比各方案的期望值的大小,进行剪枝优选。在舍去备选方案枝上,用“=”记号隔断。
望天的猪
"机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。一个决策树包含三种类型的节点:决策节点:通常用矩形框来表示机会节点:通常用圆圈来表示终结点:通常用三角形来表示决策树学习也是资料探勘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。 当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。 数据库已如下所示: (x, y) = (x1, x2, x3…, xk, y)相关的变量 Y 表示我们尝试去理解,分类或者更一般化的结果。 其他的变量x1, x2, x3 等则是帮助我们达到目的的变量。"
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方
决策树分析的基本步骤:①绘制决策图;②计算发生率;③确定效用值;④计算总效用值;⑤确定方案;⑥敏感性试验。
这个题是可以任选一题做的意思,选哪个专业的都可以。也就是说,比如考的“土建”专业,但选择“土建工程”“工业管道安装工程”或“电气安装工程”的任一题目都是可以的。
题型一:方案评价方案评价一题是考试的时候应该得满分的题目,并且新版教材本章也并未发生大的变化,所以学员要好好把握。首先要学好价值工程、决策树、寿命周期成本分析等
造价工程师2018造价-案例-精讲75、(2018)第四章第六节:决策树方法在投标决策中的运用。决策树方法在投标决策中的运用;分析背景材料,按照事件逻辑关系绘制