• 回答数

    7

  • 浏览数

    263

哼哼郭Eva
首页 > 英语培训 > boltzmann英语音标

7个回答 默认排序
  • 默认排序
  • 按时间排序

李斯的雨

已采纳

玻尔兹曼大脑(Boltzmann Brain) 我们人类究竟有多幸运,恰好生活在这个看似不可能存在的宇宙?打个比方,这种幸运就好比一个人买双色球,每秒钟买一注,每注都中500万,连中1万亿亿亿亿亿亿亿亿亿年(10的85次方)!!! 路德维格·玻尔兹曼是奥地利最伟大的物理学家之一,统计热力学先驱,在气体的分子运动理论、统计力学和热力学方面做出了卓越的贡献,要明白玻尔兹曼大脑的问题,就要先来看看以下的几个物理学结论: 熵是一个系统有序与无序的量度,熵较大说明无序程度高,熵较小说明有序程度高,如一副扑克牌,乱七八糟堆在桌上的时候它这个系统的熵就高,我们将其洗好码放整齐则它的熵就低。 根据热力学第二定律(热不可能自发地、不付代价地从低温物体传到高温物体),我们宇宙中的熵只能是随时间增加而不可能减少。但这带来一个问题:为什么我们现在观察到的熵如此之低(显然我们生活的这个世界的有序性相当高)?如果我们现在观察到的熵是正确的,那么随时间反演回去推测,宇宙起源时的熵比现在更要低得多。宇宙起源于一个极低熵的态,这是难以理解的,其几率大概是: 这个几率有多小?或者说我们人类究竟有多幸运,恰好生活在这个看似不可能存在的宇宙?打个比方,这种幸运就好比一个人买双色球,每秒钟买一注,每注都中500万,连中10000亿亿亿亿亿亿亿亿亿年(10的85次方年)!!!从统计的角度来说,这是一个不可能完成的任务,哪怕就是对上帝来说,这也是一个异常艰巨的工作。 为了解决这个问题,玻尔兹曼提出了一个假设:即使在一个接近平衡的状态下,熵也会有一个随机涨落,就好比一副散落在桌子上的扑克牌,只要时间过得足够长,它总会自动把自己洗好码放在那里,当然前提是在这么长的时间里扑克牌没有灰飞烟灭。如此一来,宇宙创生时的熵并不是如此之低,而只是我们和我们观察到的低熵世界只是一个高熵世界的随机涨落而已。 但麻烦很快就来了,如果我们的大脑——目前这个具有很多自我意识的高度有序的组织——也仅仅是一个随机涨落的结果的话,那么它应该不会是唯一的一个。对于每一个宇宙来说,熵的随机涨落应该会产生很多独立的大脑飘荡在空间里,如同幽灵一般,这就是玻尔兹曼大脑(Boltzmann Brain),简称BB。确切来说,这些BB不一定非要像我们的大脑一样长着一道道皮层沟,它可以是任何形态,像块石头也行,像团稀泥都没问题,重要的是,它们是具有自我意识的超出我们想象之外的物理实体。 BB对我们人类究竟意味着什么呢?可能还有些博爱的女士们觉得它们很可爱呢。随着量子力学的发展,BB开始让物理学家们头痛了。 20世纪初发展起来的量子力学认为,观察者对我们这个宇宙来说非常重要。我们的宇宙之所以成为现在这个模样,完全是因为有人类这个观察者存在,人类的普通观察者(Ordinary Observer,简称OO)导致了宇宙波函数的坍缩,使太阳成为太阳、月亮成为月亮、星星成为星星。换句话说,如果没有人去观察月亮,月亮就不是月亮,只是宇宙中弥漫的一大团电子云而已。 显然,拥有意识的BB也能够成为一个观察者,也能够导致波函数的坍缩。如果BB看到的宇宙和我们OO看到的不一样(这很有可能),那么我们的宇宙、我们的物理定律、我们的物理常数…..统统要被推翻。这是真正的末日,BB的宇宙谁也不知道是个什么样的宇宙,我们建构这个世界的基础转瞬之间就会冰消瓦解,彻底灭绝,意味着物理、数学、哲学等等所有的一切意义的缺失,欧核中心的强子对撞机可能产生的微型黑洞或“真”真空与此相比就像是小儿科。 科学家们当然不甘心这样的事情发生,他们投入了紧张的计算,结论是BB和OO对这个世界的争夺取决于数量,从20世纪90年代以前的宇宙学理论来看,宇宙会在将来发展出一个膨胀后收缩的过程,这样的空间尺度和时间尺度产生BB的可能性很小,数量更是不会超过OO。我们终于可以擦一下头上的冷汗了。 不过,事情还不算完。 20世纪90年代后期,当天体物理学家们一觉醒来,突然发现红移显示宇宙在加速膨胀,而非如原先所希望的那样减缓步调。这一发现意味着倘若宇宙有一个永恒膨胀的过程的话,这漫长无度的时间和空间内毫无疑问会出现一批取代我们OO的BB!!最后一根稻草终于把骆驼压垮了,科学家们抓狂了。最近几年科学家们对解决BB问题的讨论热火朝天。 加拿大阿尔伯达大学的佩吉在一篇题为《是不是我们的宇宙将烂于200亿年内?》的文章中,开篇就以爱因斯坦壮胆,说这位伟人说过“这世界上最不可理解的一件事就是世界可以理解”,由此提出了一个最激进的解答:在永恒的膨胀当中真空能量经历着涨落,不定什么时候就通过小点释放巨大的能量,从而搞出一个袖珍宇宙来——这强悍的泡泡有可能决然切断我们以及现在这个宇宙中所有的一切,使得BB没有机会充分发展,不过前提是它必须在从今天开始的200亿年内被孕育出来,否则将追不上现在这个宇宙。 当然也有物理学家对玻尔兹曼大脑问题嗤之以鼻,认为这是一个愚蠢透顶and无聊、根本就不是问题的问题。论据主要有以下几点: 1、已经发生的事情已经发生的概率严格等于1,既然发生了,我们就没有必要担心它的几率是如此之小,由此说来我们这个宇宙的熵就是这么低,爱谁谁,干嘛非得整个什么熵的随机涨落来解释宇宙的低熵态。 2、即使有BB出现了,一个BB可能是白痴的大脑,也可能是爱因斯坦的大脑。既然是随机涨落出来的,是白痴的大脑的可能性更大,因为一个没有记忆,没有知识的大脑的熵要远远大于爱因斯坦的大脑。那么,我们的宇宙为什么不可能充斥着白痴?白痴的BB对我们这个世界肯定不会有什么威胁了。3、观察者导致波函数坍缩的论调尚存争议,事实上当今科学界大多数科学家在波函数坍缩问题上支持多世界解释(多世界解释实际是不承认波函数的坍缩,而是认为在观测的时候宇宙分裂为多个),另外还有真空涨落、引力导致波函数的坍缩等等解释。既然观察者被排除在波函数坍缩之外,那么我们对于BB也就可以高枕无忧了。

boltzmann英语音标

249 评论(13)

ShangHaiWendy

科学:science科学技术: technology 科学家: scientist 科学态度: scientism科学性: scientificalness 科学研究: scientific research 科学院: academy of sciences

114 评论(15)

Oicdlljjgff

Boltzmann Brain :玻尔兹曼大脑Problem:问题

208 评论(8)

速度染发

物理学英语词汇BET公式 BET formulaDLVO理论 DLVO theoryHLB法 hydrophile-lipophile balance methodpVT性质 pVT propertyζ电势 zeta potential阿伏加德罗常数 Avogadro’number阿伏加德罗定律 Avogadro law阿累尼乌斯电离理论 Arrhenius ionization theory阿累尼乌斯方程 Arrhenius equation阿累尼乌斯活化能 Arrhenius activation energy阿马格定律 Amagat law艾林方程 Erying equation爱因斯坦光化当量定律 Einstein’s law of photochemical equivalence爱因斯坦-斯托克斯方程 Einstein-Stokes equation安托万常数 Antoine constant安托万方程 Antoine equation盎萨格电导理论 Onsager’s theory of conductance半电池 half cell半衰期 half time period饱和液体 saturated liquids饱和蒸气 saturated vapor饱和吸附量 saturated extent of adsorption饱和蒸气压 saturated vapor pressure爆炸界限 explosion limits比表面功 specific surface work比表面吉布斯函数 specific surface Gibbs function比浓粘度 reduced viscosity标准电动势 standard electromotive force标准电极电势 standard electrode potential标准摩尔反应焓 standard molar reaction enthalpy标准摩尔反应吉布斯函数 standard Gibbs function of molar reaction标准摩尔反应熵 standard molar reaction entropy标准摩尔焓函数 standard molar enthalpy function标准摩尔吉布斯自由能函数 standard molar Gibbs free energy function标准摩尔燃烧焓 standard molar combustion enthalpy标准摩尔熵 standard molar entropy标准摩尔生成焓 standard molar formation enthalpy标准摩尔生成吉布斯函数 standard molar formation Gibbs function标准平衡常数 standard equilibrium constant标准氢电极 standard hydrogen electrode标准态 standard state标准熵 standard entropy标准压力 standard pressure标准状况 standard condition表观活化能 apparent activation energy表观摩尔质量 apparent molecular weight表观迁移数 apparent transference number表面 surfaces表面过程控制 surface process control表面活性剂 surfactants表面吸附量 surface excess表面张力 surface tension表面质量作用定律 surface mass action law波义尔定律 Boyle law波义尔温度 Boyle temperature波义尔点 Boyle point玻尔兹曼常数 Boltzmann constant玻尔兹曼分布 Boltzmann distribution玻尔兹曼公式 Boltzmann formula玻尔兹曼熵定理 Boltzmann entropy theorem玻色-爱因斯坦统计 Bose-Einstein statistics泊 Poise不可逆过程 irreversible process不可逆过程热力学 thermodynamics of irreversible processes不可逆相变化 irreversible phase change布朗运动 brownian movement查理定律 Charle’s law产率 yield敞开系统 open system超电势 over potential沉降 sedimentation沉降电势 sedimentation potential沉降平衡 sedimentation equilibrium触变 thixotropy粗分散系统 thick disperse system催化剂 catalyst单分子层吸附理论 mono molecule layer adsorption单分子反应 unimolecular reaction单链反应 straight chain reactions弹式量热计 bomb calorimeter道尔顿定律 Dalton law道尔顿分压定律 Dalton partial pressure law德拜和法尔肯哈根效应 Debye and Falkenhagen effect德拜立方公式 Debye cubic formula德拜-休克尔极限公式 Debye-Huckel’s limiting equation等焓过程 isenthalpic process等焓线 isenthalpic line等几率定理 theorem of equal probability等温等容位 Helmholtz free energy等温等压位 Gibbs free energy等温方程 equation at constant temperature低共熔点 eutectic point低共熔混合物 eutectic mixture低会溶点 lower consolute point低熔冰盐合晶 cryohydric第二类永动机 perpetual machine of the second kind第三定律熵 third-law entropy第一类永动机 perpetual machine of the first kind缔合化学吸附 association chemical adsorption电池常数 cell constant电池电动势 electromotive force of cells电池反应 cell reaction电导 conductance电导率 conductivity电动势的温度系数 temperature coefficient of electromotive force电动电势 zeta potential电功 electric work电化学 electrochemistry电化学极化 electrochemical polarization电极电势 electrode potential电极反应 reactions on the electrode电极种类 type of electrodes电解池 electrolytic cell电量计 coulometer电流效率 current efficiency电迁移 electro migration电迁移率 electromobility电渗 electroosmosis电渗析 electrodialysis电泳 electrophoresis丁达尔效应 Dyndall effect定容摩尔热容 molar heat capacity under constant volume定容温度计 Constant voIume thermometer定压摩尔热容 molar heat capacity under constant pressure定压温度计 constant pressure thermometer定域子系统 localized particle system动力学方程 kinetic equations动力学控制 kinetics control独立子系统 independent particle system对比摩尔体积 reduced mole volume对比体积 reduced volume对比温度 reduced temperature对比压力 reduced pressure对称数 symmetry number对行反应 reversible reactions对应状态原理 principle of corresponding state多方过程 polytropic process多分子层吸附理论 adsorption theory of multi-molecular layers二级反应 second order reaction二级相变 second order phase change法拉第常数 faraday constant法拉第定律 Faraday’s law反电动势 back E.M.F.反渗透 reverse osmosis反应分子数 molecularity反应级数 reaction orders反应进度 extent of reaction反应热 heat of reaction反应速率 rate of reaction反应速率常数 constant of reaction rate范德华常数 van der Waals constant范德华方程 van der Waals equation范德华力 van der Waals force范德华气体 van der Waals gases范特霍夫方程 van’t Hoff equation范特霍夫规则 van’t Hoff rule范特霍夫渗透压公式 van’t Hoff equation of osmotic pressure非基元反应 non-elementary reactions非体积功 non-volume work非依时计量学反应 time independent stoichiometric reactions菲克扩散第一定律 Fick’s first law of diffusion沸点 boiling point沸点升高 elevation of boiling point费米-狄拉克统计 Fermi-Dirac statistics分布 distribution分布数 distribution numbers分解电压 decomposition voltage分配定律 distribution law分散系统 disperse system分散相 dispersion phase分体积 partial volume分体积定律 partial volume law分压 partial pressure分压定律 partial pressure law分子反应力学 mechanics of molecular reactions分子间力 intermolecular force分子蒸馏 molecular distillation封闭系统 closed system附加压力 excess pressure弗罗因德利希吸附经验式 Freundlich empirical formula of adsorption负极 negative pole负吸附 negative adsorption复合反应 composite reaction盖·吕萨克定律 Gay-Lussac law盖斯定律 Hess law甘汞电极 calomel electrode感胶离子序 lyotropic series杠杆规则 lever rule高分子溶液 macromolecular solution高会溶点 upper consolute point隔离法 the isolation method格罗塞斯-德雷珀定律 Grotthus-Draoer’s law隔离系统 isolated system根均方速率 root-mean-square speed功 work功函 work content共轭溶液 conjugate solution共沸温度 azeotropic temperature构型熵 configurational entropy孤立系统 isolated system固溶胶 solid sol固态混合物 solid solution固相线 solid phase line光反应 photoreaction光化学第二定律 the second law of actinochemistry光化学第一定律 the first law of actinochemistry光敏反应 photosensitized reactions光谱熵 spectrum entropy广度性质 extensive property广延量 extensive quantity广延性质 extensive property规定熵 stipulated entropy过饱和溶液 oversaturated solution过饱和蒸气 oversaturated vapor过程 process过渡状态理论 transition state theory过冷水 super-cooled water过冷液体 overcooled liquid过热液体 overheated liquid亥姆霍兹函数 Helmholtz function亥姆霍兹函数判据 Helmholtz function criterion亥姆霍兹自由能 Helmholtz free energy亥氏函数 Helmholtz function焓 enthalpy亨利常数 Henry constant亨利定律 Henry law恒沸混合物 constant boiling mixture恒容摩尔热容 molar heat capacity at constant volume恒容热 heat at constant volume恒外压 constant external pressure恒压摩尔热容 molar heat capacity at constant pressure恒压热 heat at constant pressure化学动力学 chemical kinetics化学反应计量式 stoichiometric equation of chemical reaction化学反应计量系数 stoichiometric coefficient of chemical reaction化学反应进度 extent of chemical reaction化学亲合势 chemical affinity化学热力学 chemical thermodynamics化学势 chemical potential化学势判据 chemical potential criterion化学吸附 chemisorptions环境 environment环境熵变 entropy change in environment挥发度 volatility混合熵 entropy of mixing混合物 mixture活度 activity活化控制 activation control活化络合物理论 activated complex theory活化能 activation energy霍根-华森图 Hougen-Watson Chart基态能级 energy level at ground state基希霍夫公式 Kirchhoff formula基元反应 elementary reactions积分溶解热 integration heat of dissolution吉布斯-杜亥姆方程 Gibbs-Duhem equation吉布斯-亥姆霍兹方程 Gibbs-Helmhotz equation吉布斯函数 Gibbs function吉布斯函数判据 Gibbs function criterion吉布斯吸附公式 Gibbs adsorption formula吉布斯自由能 Gibbs free energy吉氏函数 Gibbs function极化电极电势 polarization potential of electrode极化曲线 polarization curves极化作用 polarization极限摩尔电导率 limiting molar conductivity几率因子 steric factor计量式 stoichiometric equation计量系数 stoichiometric coefficient价数规则 rule of valence简并度 degeneracy键焓 bond enthalpy胶冻 broth jelly胶核 colloidal nucleus胶凝作用 demulsification胶束 micelle胶体 colloid胶体分散系统 dispersion system of colloid胶体化学 collochemistry胶体粒子 colloidal particles胶团 micelle焦耳 Joule焦耳-汤姆生实验 Joule-Thomson experiment焦耳-汤姆生系数 Joule-Thomson coefficient焦耳-汤姆生效应 Joule-Thomson effect焦耳定律 Joule`s law接触电势 contact potential接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热 heat of crystallization解离化学吸附 dissociation chemical adsorption界面 interfaces界面张力 surface tension浸湿 immersion wetting浸湿功 immersion wetting work精馏 rectify聚(合)电解质 polyelectrolyte聚沉 coagulation聚沉值 coagulation value绝对反应速率理论 absolute reaction rate theory绝对熵 absolute entropy绝对温标 absolute temperature scale绝热过程 adiabatic process绝热量热计 adiabatic calorimeter绝热指数 adiabatic index卡诺定理 Carnot theorem卡诺循环 Carnot cycle开尔文公式 Kelvin formula柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law科尔劳施离子独立运动定律 Kohlrausch’s Law of Independent Migration of Ions可能的电解质 potential electrolyte可逆电池 reversible cell可逆过程 reversible process可逆过程方程 reversible process equation可逆体积功 reversible volume work可逆相变 reversible phase change克拉佩龙方程 Clapeyron equation克劳修斯不等式 Clausius inequality克劳修斯-克拉佩龙方程 Clausius-Clapeyron equation控制步骤 control step库仑计 coulometer扩散控制 diffusion controlled拉普拉斯方程 Laplace’s equation拉乌尔定律 Raoult law兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式 Langmuir adsorption isotherm formula雷利公式 Rayleigh equation冷冻系数 coefficient of refrigeration冷却曲线 cooling curve离解热 heat of dissociation离解压力 dissociation pressure离域子系统 non-localized particle systems离子的标准摩尔生成焓 standard molar formation of ion离子的电迁移率 mobility of ions离子的迁移数 transport number of ions离子独立运动定律 law of the independent migration of ions离子氛 ionic atmosphere离子强度 ionic strength理想混合物 perfect mixture理想气体 ideal gas接触电势 contact potential接触角 contact angle节流过程 throttling process节流膨胀 throttling expansion节流膨胀系数 coefficient of throttling expansion结线 tie line结晶热 heat of crystallization解离化学吸附 dissociation chemical adsorption界面 interfaces界面张力 surface tension浸湿 immersion wetting浸湿功 immersion wetting work精馏 rectify聚(合)电解质 polyelectrolyte聚沉 coagulation聚沉值 coagulation value绝对反应速率理论 absolute reaction rate theory绝对熵 absolute entropy绝对温标 absolute temperature scale绝热过程 adiabatic process绝热量热计 adiabatic calorimeter绝热指数 adiabatic index卡诺定理 Carnot theorem卡诺循环 Carnot cycle开尔文公式 Kelvin formula柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law科尔劳施离子独立运动定律 Kohlrausch’s Law of Independent Migration of Ions可能的电解质 potential electrolyte可逆电池 reversible cell可逆过程 reversible process可逆过程方程 reversible process equation可逆体积功 reversible volume work可逆相变 reversible phase change克拉佩龙方程 Clapeyron equation克劳修斯不等式 Clausius inequality克劳修斯-克拉佩龙方程 Clausius-Clapeyron equation控制步骤 control step库仑计 coulometer扩散控制 diffusion controlled拉普拉斯方程 Laplace’s equation拉乌尔定律 Raoult law兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式 Langmuir adsorption isotherm formula雷利公式 Rayleigh equation冷冻系数 coefficient of refrigeration冷却曲线 cooling curve离解热 heat of dissociation离解压力 dissociation pressure离域子系统 non-localized particle systems离子的标准摩尔生成焓 standard molar formation of ion离子的电迁移率 mobility of ions离子的迁移数 transport number of ions离子独立运动定律 law of the independent migration of ions离子氛 ionic atmosphere离子强度 ionic strength理想混合物 perfect mixture理想气体 ideal gas理想气体的绝热指数 adiabatic index of ideal gases理想气体的微观模型 micro-model of ideal gas理想气体反应的等温方程 isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程 adiabatic reversible process equation of ideal gases理想气体状态方程 state equation of ideal gas理想稀溶液 ideal dilute solution理想液态混合物 perfect liquid mixture粒子 particles粒子的配分函数 partition function of particles连串反应 consecutive reactions链的传递物 chain carrier链反应 chain reactions量热熵 calorimetric entropy量子统计 quantum statistics量子效率 quantum yield临界参数 critical parameter临界常数 critical constant临界点 critical point临界胶束浓度 critical micelle concentration临界摩尔体积 critical molar volume临界温度 critical temperature临界压力 critical pressure临界状态 critical state零级反应 zero order reaction流动电势 streaming potential流动功 flow work笼罩效应 cage effect路易斯-兰德尔逸度规则 Lewis-Randall rule of fugacity露点 dew point露点线 dew point line麦克斯韦关系式 Maxwell relations麦克斯韦速率分布 Maxwell distribution of speeds麦克斯韦能量分布 MaxwelIdistribution of energy毛细管凝结 condensation in capillary毛细现象 capillary phenomena米凯利斯常数 Michaelis constant摩尔电导率 molar conductivity摩尔反应焓 molar reaction enthalpy摩尔混合熵 mole entropy of mixing摩尔气体常数 molar gas constant摩尔热容 molar heat capacity摩尔溶解焓 mole dissolution enthalpy摩尔稀释焓 mole dilution enthalpy内扩散控制 internal diffusions control内能 internal energy内压力 internal pressure能级 energy levels能级分布 energy level distribution能量均分原理 principle of the equipartition of energy能斯特方程 Nernst equation能斯特热定理 Nernst heat theorem凝固点 freezing point凝固点降低 lowering of freezing point凝固点曲线 freezing point curve凝胶 gelatin凝聚态 condensed state凝聚相 condensed phase浓差超电势 concentration over-potential浓差极化 concentration polarization浓差电池 concentration cells帕斯卡 pascal泡点 bubble point物理学专有名词具体参看物理化学 英语名词网站化学方面 1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律可参考网站 中山大学化学资料库经济方面的最全可参考 这个网站把经济类的专有名词由a到z排列 还有英汉对照的 超全的希望楼主满意O(∩_∩)O

234 评论(9)

Khloekloklo

science 科学

352 评论(8)

琳子Yulander

m center m 中心mach angle 马赫角mach cone 马赫锥mach number 马赫数mach wave 马赫波mach zehnder interferometer 马赫 曾德耳干涉仪mach's principle 马赫原理machine language 机骑言machine oriented language 面向机颇语言macleod gage 麦克劳计macro crystal 粗晶macrography 宏观照相术macroinstability 宏观不稳定性macromolecule 高分子macron 宏观粒子macroparticle 宏观粒子macrophysics 宏观物理学macroscopic brownian motion 宏观布朗运动macroscopic particle 宏观粒子macroscopic quantization 宏观量子化macroscopic system 宏观系统macrostate 宏观态macrostructure 宏观结构macrosystem 宏观系统magdeburg hemispheres 马德堡球magellanic clouds 麦哲伦星系magellanic galaxy 麦哲伦星系magic eye 光党指示管magic lantern 幻灯magic number 幻数magic t t 形波导支路magma 岩浆magneli structure 马格涅利结构magnesium 镁magnet 磁铁magnetic 磁的magnetic amplifier 磁放大器magnetic analyzer 磁分析器magnetic anisotropy 磁蛤异性magnetic anomaly 磁异常magnetic axis 磁轴magnetic balance 磁力天平magnetic birefringence 磁双折射magnetic breakdown 磁哗magnetic bubble 磁泡magnetic bubble storage 磁泡存储器magnetic character figure 磁特正magnetic charge 磁荷magnetic chart 磁图magnetic circuit 磁路magnetic conductance 磁导magnetic core storage 磁芯存储器magnetic current 磁流magnetic declination 磁偏角magnetic deflection 磁偏转magnetic deflection mass spectrometer 磁偏转型质谱仪magnetic dip 磁倾角magnetic dipole 磁偶极子magnetic dipole moment 磁偶极矩magnetic dipole radiation 磁偶极辐射magnetic disk 磁盘magnetic disturbances 磁扰magnetic domain 磁畴magnetic domain walls 磁畴壁magnetic drum 磁鼓magnetic elements 磁元magnetic energy 磁能magnetic entropy 磁熵magnetic equator 磁赤道magnetic field 磁场magnetic field energy 磁场能量magnetic field intensity 磁场强度magnetic field strength 磁场强度magnetic fluid 磁铃magnetic flux 磁通量magnetic flux compression 磁通量紧缩magnetic flux density 磁通密度magnetic flux quantization 磁通量量子化magnetic fluxmeter 磁通量计magnetic focusing 磁致聚焦magnetic force 磁力magnetic head 磁头magnetic hysteresis 磁滞magnetic image 磁象magnetic inclination 磁倾角magnetic induction 磁感应magnetic induction flux 磁感应束magnetic kerr effect 克尔氏磁效应magnetic latitude 磁纬度magnetic leakage 磁漏magnetic lens 磁透镜magnetic line of force 磁力线magnetic loss 磁损耗magnetic map 磁图magnetic material 磁性材料magnetic memory 磁存储器magnetic mirror 磁镜magnetic moment 磁矩magnetic monopole 磁单极子magnetic needle 磁针magnetic north 磁北magnetic permeability 磁导率magnetic perturbation 磁扰magnetic point group 磁点群magnetic polarization 磁极化magnetic polaron 磁极化子magnetic pole 磁极magnetic potential 磁势magnetic pressure 磁压magnetic prism 磁棱镜magnetic probe 磁探针magnetic prospecting 磁法勘探magnetic quantum number 磁量子数magnetic recorder 磁记录器magnetic recording 磁记录magnetic refrigeration 磁冷却magnetic refrigerator 磁致冷机magnetic relaxation 磁弛豫magnetic reluctance 磁阻magnetic remanence 顽磁magnetic resistance 磁阻magnetic resonance 磁共振magnetic reynolds number 磁雷诺数magnetic rigidity 磁刚性magnetic rotatory dispersion 磁致旋光色散magnetic saturation 磁饱和magnetic semiconductor 磁性半导体magnetic separation 磁力选矿magnetic shell 磁壳magnetic shield 磁屏蔽magnetic sound recording 磁录音magnetic space group 磁空间群magnetic spectrometer 磁谱仪magnetic spin quantum number 自旋磁量子数magnetic star 磁星magnetic store 磁存储器magnetic storm 磁暴magnetic structure 磁结构magnetic substance 磁体magnetic superconductor 磁超导体magnetic surface 磁面magnetic susceptibility 磁化率magnetic tape 磁带magnetic thermometer 磁温度计magnetic thin film 磁薄膜magnetic torque 磁转矩magnetic transition 磁跃迁magnetic trap 磁阱magnetic variable 磁变星magnetic variable star 磁变星magnetic variations 磁变magnetic viscosity 磁粘滞性magnetics 磁学magnetism 磁magnetization 磁化magnetization curve 磁化曲线magnetization vector 磁化矢量magnetized black hole 磁化黑洞magnetizing 磁化magnetizing coil 磁化线圈magnetizing current 磁化电流magnetizing force 磁化力magneto aerodynamics 磁空气动力学magneto optic effect 磁光效应magneto oscillatory absorption 磁振荡吸收magneto rotation 磁致旋光magneto volume effect 磁体积效应magnetoacoustic effect 磁声效应magnetoacoustic wave 磁声波magnetocaloric effect 磁热效应magnetochemistry 磁化学magnetocircular dichroism 磁圆二向色性magnetodielectric 磁性电介质magnetodiode 磁敏二极管magnetoelastic effect 磁弹性效应magnetoelastic wave 磁弹性波magnetoelectricity 磁电学magnetogram 磁强记录图magnetograph 磁强记录仪magnetohydrodynamic instability 磁铃力学不稳定性magnetohydrodynamic wave 磁铃波magnetohydrodynamics 磁铃动力学magnetology 磁学magnetomechanical factor 磁力学因数magnetomechanics 磁力学magnetometer 磁强计magnetomotive force 磁通势magneton 磁子magnetooptics 磁光学magnetophotophoresis 磁光致泳动magnetoplasma 磁等离子体magnetoplasmadynamics 磁等离子体动力学magnetoplumbite 氧化铅铁淦氧磁体magnetopolaron 磁极化子magnetoreflection 磁反射magnetoresistance 磁阻效应magnetoresistor 磁致电阻器magnetosphere 磁层magnetostatic field 静磁场magnetostatics 静磁学magnetostriction 磁致伸缩magnetostriction oscillator 磁致伸缩振荡器magnetostrictive effect 磁致伸缩效应magnetothermal effect 磁致热效应magnetothermoelectric effect 磁致热电效应magnetron 磁控管magnetron vacuum gage 磁控管真空计magnification 放大率magnifier 放大镜magnifying glass 放大镜magnitude 量magnitude of the eclipse 食分magnon 磁振子magnus effect 马格努斯效应main quantum number 挚子数main sequence 烛main sequence stars 烛星main storage 宙储器major planets 大行星majorana force 马约喇纳力majorana neutrino 马约喇纳中微子majorana particle 马约喇纳粒子majorana spinor 马约喇纳旋量majority carrier 多数载劣majoron 马约喇纳量子maksutov telescope 马克苏托夫望远镜malleability 展性malter effect 马尔特效应malus law 马吕斯定律man made satellite 人造卫星mandelstam representation 曼德尔斯坦表象mandrin 细探针manganese 锰manganin 锰镍铜合金manifold 廖manipulator 机械手manometer 压力表manoscope 气体密度计manoscopy 气体密度测定manostat 稳压器mantle 地幔mantle convection 地幔对流mantle rayleigh wave 地幔瑞利波manual 手册many body force 多体力many body problem 多体问题many body system 多体系many wave approximation 多波近似mare 海margin 余量margin of error 误差范围margin of safety 安全因子marginal rays 边缘光线marine physics 海洋物理学mariner project 马里纳计划marisat system 海洋卫星系统mark 标记markoff chain 马尔柯夫链markoff process 马尔柯夫过程marriage of cable and satellites 电缆和人造卫星的联接mars 火星martensite 马氏体maser 微波激射器脉塞mass 质量mass absorption coefficient 质量吸收系数mass analysis 质量分析mass analyzer 质谱仪mass defect 质量筐mass effect 聚集效应mass energy conversion formula 质能换算公式mass energy equivalence principle 质能相当性原理mass energy relation 质能关系mass filter 滤质器mass flowmeter 质量量计mass formula 质量公式mass luminosity relation 质量发光度关系mass number 质量数mass renormalization 质量重正化mass separator 质量分离器mass shell 质壳mass spectrograph 质谱仪mass spectrometer 质谱仪mass spectroscopy 质谱法mass spectrum 质谱mass stopping power 质量阻止本领mass transfer 质量传递mass unit 质量单位massey criterion 梅涡据master equation 纸程master gyroscope 自由陀螺仪matching 匹配material 物质material point 质点material wave 物质波materials science 材料科学materials testing reactor 材料试验反应堆mathematical crystallography 数学晶体学mathematical expectation 数学期望值mathematical pendulum 单摆mathematical physics 数学物理mathematical programming 数学规划mathieu functions 马提厄函数matrix mechanics 矩阵力学matrix representation 矩阵表示matter 物质matter dominated universe 物质为诸宙matter wave 德布罗意波matthias rule 马赛厄斯定则matthiessen rule 马苇定则maupertuis' principle 莫佩尔秋原理maximum deviation 最大偏差maximum load 最大负载maximum lyapunov index 最大李亚普诺夫指数maximum permissible concentration 最大容许浓度maximum permissible dose 最大容许剂量maximum postulated accident 最大假设事故maximum speed 最大速度maximum stress 最大应力maximum temperature 最高温度maximum thermometer 最高温度表maximum velocity 最大速度maxwell 麦克斯韦maxwell boltzmann distribution 麦克斯韦 玻耳兹曼分布maxwell boltzmann statistics 麦克斯韦 玻耳兹曼统计maxwell bridge 麦克斯韦电桥maxwell demon 麦克斯韦妖maxwell field 麦克斯韦场maxwell relations 麦克斯韦关系maxwell velocity distribution 麦克斯韦的速度分布maxwell's distribution law 麦克斯韦分布律maxwell's equations 麦克斯韦方程maxwellian distribution 麦克斯韦分布maxwellmeter 磁通计mb 微巴mean acceleration 平均加速度mean deviation 平均偏差mean ergodic theorem 平均脯历经定理mean error 平均误差mean free path 平均自由程mean life 平均寿命mean lifetime 平均寿命mean solar day 平太阳日mean solar time 平太阳时mean square error 均方误差mean sun 平太阳mean value 平均值mean velocity 平均速度mean velosity 平场速度measure 测度measurement 测量measurement error 测量误差measuring 测量measuring apparatus 测量仪器measuring eyepiece 目镜测微计measuring instrument 测试仪器度量仪表measuring method 测量法measuring technique 测量技术mechanical energy 力学能mechanical equivalent of heat 热功当量mechanical filter 机械滤波器mechanical monochromator 机械单色器mechanical motion 力学运动mechanical system 力学系mechanical vibrations 机械振动mechanical world view of nature 机械的自然观mechanics 力学mechanism 机构mechanocaloric effect 机械热效应mechanochemistry 机械化学mechanoelectric conversion 机电变换mechanostriction 机致伸缩mechnical equivalent of light 光功当量medical electronics 医疗电子学medical physics 医用物理学medium 介质medium energy electron diffraction 中能电子衍射medium energy electron scattering spectroscopy 中能电子散射能谱学mega 兆mega electron volt 兆电子伏megacycle 兆周megawatt 兆瓦megger 高阻表megohm 兆欧meissner effect 迈斯纳效应meldometer 熔点测定计melt growth 熔体生长melting 熔化melting heat 熔化热melting point 熔点melting temperature 熔解温度membrane 膜memory 存储;记忆memory capacity 存储容量memory cell 存储单元memory effect 记忆效应memory register 存储寄存器mendeleev's periodic law 门捷列夫周期律mendelevium 钔meniscus 弯月面meniscus lens 弯月透镜mensa 山案座mercury 水星;水银mercury arc lamp 水银灯mercury arc rectifier 汞弧整流mercury barometer 水银气压表mercury cell 汞电池mercury diffusion pump 汞扩散泵mercury i chloride structure 氯化汞i型结构mercury relay 水银继电器mercury telemetry 水星遥测术mercury thermometer 水银温度表mercury vacuum gage 水银真空计mercury vapor lamp 水银灯meridian 子午线meridian passage 中天meridian transit 中天meridional ray 子午光线mesa transistor 台面型晶体管mesoatom 介子原子mesodynamics 介子动力学mesomolecule 介子分子mesomorphic state 介晶态meson 介子meson factory 介子工厂meson theory 介子理论meson theory of nuclear forces 核力的介子理论mesonic atom 介子原子mesonic molecule 介子分子mesopic vision 黄昏黎糜觉mesoscopic effect 介观效应mesosphere 中间层messier catalog 梅味星云星团表metacenter 定倾中心metal 金属metal film resistor 金属薄膜电阻器metal foil 金属箔metal insulator semiconductor light emitting diod 金属绝缘膜半导体发光二极管metal insulator transition 金属绝缘体跃迁metal nonmetal transition 金属非金属跃迁metal organic compound 有机金属化合物metal oxide semiconductor structure mos 结构metal vapor laser 金属蒸汽激光器metallic 金属的metallic binding 金属键metallic bond 金属键metallic crystal 金属晶体metallic element 金属元素metallic glass 金属玻璃metallic lustre 金属光泽metallic microcluster 金属微簇metallic reflection 金属反射metallic thin film 金属薄膜metallic valence 金属原子价metallized paper capacitor 镀金属纸介电容器metallography 金相学metallomicroscope 金相显微镜metallurgy 冶金学metamagnetism 亚磁性metastability 亚稳定性metastable atom 亚稳原子metastable equilibrium 亚稳平衡metastable level 亚稳能级metastable molecule 亚稳分子metastable nucleus 亚稳核metastable phase 亚稳相metastable state 亚稳状态meteor 燎meteor astronomy 燎天文学meteor camera 燎照相机meteor shower 燎雨meteor stream 燎群meteoric dust 燎尘meteoric iron 陨铁meteoric stone 石陨星meteorite 陨星meteorite crater 陨星坑meteoritic iron 陨铁meteoritics 陨石学meteorological acoustics 气象声学meteorological optics 气象光学meteorological radar 气象雷达meteorological satellite 气象卫星meteorological thermodynamics 气象热力学meteorology 气象学meter 米molectronics 分子电子学molecular absorption coefficient 分子吸收系数molecular acoustics 分子声学molecular astronomy 分子天文学molecular beam 分子束molecular beam epitaxy 分子束外延molecular beam magnetic resonance 分子束磁共振molecular beam maser 分子束微波激射器molecular beam scattering 分子束散射molecular beam spectroscopy 分子束光谱学molecular biology 分子生物学molecular bond 分子键molecular chaos 分子混沌态molecular clock 分子钟molecular cloud 分子云molecular compound 分子化合物molecular conductivity 分子导电率molecular crystal 分子晶体molecular diffusion 分子扩散molecular dynamics 分子动力学molecular electronics 分子电子学molecular field 分子场molecular field approximation 分子场近似molecular flow 分子流molecular force 分子力molecular force field 分子力场molecular gas laser 分子气体激光器molecular heat 分子热molecular image 分子图象molecular integral 分子积分molecular inversion 分子倒转molecular ion 分子离子molecular kinetic theory 分子运动论molecular lattice 分子晶格molecular magnet 分子磁铁molecular mass 分子质量molecular motion 分子运动molecular orbital 分子轨函数molecular physics 分子物理学molecular polarizability 分子极化度molecular polarization 分子极化molecular pump 分子泵molecular radius 分子半径molecular rays 分子束molecular reaction 分子反应molecular refraction 分子折射molecular rotation 分子转动molecular scattering 分子散射molecular science 分子科学molecular sieve 分子筛molecular spectrum 分子光谱molecular structure 分子结构molecular structure theory 分子结构论molecular viscosity 分子粘性molecular volume 克分子体积molecular weight 分子量molecule 分子moletron 分子加速器molybdenum 钼moment 矩moment of inertia 转动惯量moment of momentum 角动量momentum 动量本文来自: 恒星英语学习网(www.Hxen.com) 详细出处参考:

223 评论(12)

悠悠思忞

The problem of the origin of the universe, is a bit like the old question: Which came first, the chicken, or the egg. In other words, what agency created the universe. And what created that agency. Or perhaps, the universe, or the agency that created it, existed forever, and didn't need to be created. Up to recently, scientists have tended to shy away from such questions, feeling that they belonged to metaphysics or religion, rather than to science. However, in the last few years, it has emerged that the Laws of Science may hold even at the beginning of the universe. In that case, the universe could be self contained, and determined completely by the Laws of Science. The debate about whether, and how, the universe began, has been going on throughout recorded history. Basically, there were two schools of thought. Many early traditions, and the Jewish, Christian and Islamic religions, held that the universe was created in the fairly recent past. For instance, Bishop Usher calculated a date of four thousand and four BC, for the creation of the universe, by adding up the ages of people in the Old Testament. One fact that was used to support the idea of a recent origin, was that the Human race is obviously evolving in culture and technology. We remember who first performed that deed, or developed this technique. Thus, the arguement runs, we can not have been around all that long. Otherwise, we would have already progressed more than we have. In fact, the biblical date for the creation, is not that far off the date of the end of the last Ice Age, which is when modern humans seem first to have appeared. On the other hand, some people, such as the Greek philosopher, Aristotle, did not like the idea that the universe had a beginning. They felt that would imply Divine intervention. They prefered to believe that the universe, had existed, and would exist, forever. Something that was eternal, was more perfect than something that had to be created. They had an answer to the argument about human progress, that I described. It was, that there had been periodic floods, or other natural disasters, which repeatedly set the human race right back to the beginning. Both schools of thought held that the universe was essentially unchanging in time. Either it had been created in its present form, or it had existed forever, like it is today. This was a natural belief in those times, because human life, and, indeed the whole of recorded history, are so short that the universe has not changed significantly during them. In a static, unchanging universe, the question of whether the universe has existed forever, or whether it was created at a finite time in the past, is really a matter for metaphysics or religion: either theory could account for such a universe. Indeed, in 1781, the philosopher, Immanuel Kant, wrote a monumental, and very obscure work, The Critique of Pure Reason. In it, he concluded that there were equally valid arguements, both for believing that the universe had a beginning, and for believing that it did not. As his title suggests, his conclusions were based simply on reason. In other words, they did not take any account of observations about the universe. After all, in an unchanging universe, what was there to observe? In the 19th century, however, evidence began to accumulate that the earth, and the rest of the universe, were in fact changing with time. On the one hand, geologists realized that the formation of the rocks, and the fossils in them, would have taken hundreds or thousands of millions of years. This was far longer than the age of the Earth, according to the Creationists. On the other hand, the German physicist, Boltzmann, discovered the so-called Second Law of Thermodynamics. It states that the total amount of disorder in the universe (which is measured by a quantity called entropy), always increases with time. This, like the argument about human progress, suggests that the universe can have been going only for a finite time. Otherwise, the universe would by now have degenerated into a state of complete disorder, in which everything would be at the same temperature. Another difficulty with the idea of a static universe, was that according to Newton's Law of Gravity, each star in the universe ought to be attracted towards every other star. So how could they stay at a constant distance from each other. Wouldn't they all fall together. Newton was aware of this problem about the stars attracting each other. In a letter to Richard Bentley, a leading philosopher of the time, he agreed that a finite collection of stars could not remain motionless: they would all fall together, to some central point. However, he argued that an infinite collection of stars, would not fall together: for there would not be any central point for them to fall to. This argument is an example of the pitfalls that one can encounter when one talks about infinite systems. By using different ways to add up the forces on each star, from the infinite number of other stars in the universe, one can get different answers to the question: can they remain at constant distance from each other. We now know that the correct proceedure, is to consider the case of a finite region of stars. One then adds more stars, distributed roughly uniformly outside the region. A finite collection of stars will fall together. According to Newton's Law of Gravity, adding more stars outside the region, will not stop the collapse. Thus, an infinite collection of stars, can not remain in a motionless state. If they are not moving relative to each other at one time, the attraction between them, will cause them to start falling towards each other. Alternatively, they can be moving away from each other, with gravity slowing down the velocity of recession. Despite these difficulties with the idea of a static and unchanging universe, no one in the seventeenth, eighteenth, nineteenth or early twentieth centuries, suggested that the universe might be evolving with time. Newton and Einstein, both missed the chance of predicting, that the universe should be either contracting, or expanding. One can not really hold it against Newton, because he was two hundred and fifty years before the observational discovery of the expansion of the universe. But Einstein should have known better. Yet when he formulated the General Theory of Relativity to reconcile Newton's theory with his own Special Theory of Relativity, he added a so-called, ``cosmological constant''. This had a repulsive gravitational effect, which could balance the attractive effect of the matter in the universe. In this way, it was possible to have a static model of the universe. Einstein later said: The cosmological constant was the greatest mistake of my life. That was after observations of distant galaxies, by Edwin Hubble in the 1920's, had shown that they were moving away from us, with velocities that were roughly proportional to their distance from us. In other words, the universe is not static, as had been previously thought: it is expanding. The distance between galaxies is increasing with time. The discovery of the expansion of the universe, completely changed the discussion about its origin. If you take the present motion of the galaxies, and run it back in time, it seems that they should all have been on top of each other, at some moment, between ten and twenty thousand million years ago. At this time, which is called the Big Bang, the density of the universe, and the curvature of spacetime, would have been infinite. Under such conditions, all the known laws of science would break down. This is a disaster for science. It would mean that science alone, could not predict how the universe began. All that science could say is that: The universe is as it is now, because it was as it was then. But Science could not explain why it was, as it was, just after the Big Bang. Not surprisingly, many scientists were unhappy with this conclusion. There were thus several attempts to avoid the Big Bang. One was the so-called Steady State theory. The idea was that, as the galaxies moved apart from each other, new galaxies would form in the spaces inbetween, from matter that was continually being created. The universe would have existed, and would continue to exist, forever, in more or less the same state as it is today. The Steady State model required a modification of general relativity, in order that the universe should continue to expand, and new matter be created. The rate of creation needed was very low: about one particle per cubic kilometre per year. Thus, this would not be in conflict with observation. The theory also predicted that the average density of galaxies, and similar objects, should be constant, both in space and time. However, a survey of extra-galactic sources of radio waves, was carried out by Martin Ryle and his group at Cambridge. This showed that there were many more faint sources, than strong ones. On average, one would expect that the faint sources were the more distant ones. There were thus two possibilities: Either, we were in a region of the universe, in which strong sources were less frequent than the average. Or, the density of sources was higher in the past, when the light left the more distant sources. Neither of these possibilities was compatible with the prediction of the Steady State theory, that the density of radio sources should be constant in space and time. The final blow to the Steady State theory was the discovery, in 1965, of a background of microwaves. These had the characteristic spectrum of radiation emited by a hot body, though, in this case, the term, hot, is hardly appropriate, since the temperature was only 2.7 degrees above Absolute Zero. The universe is a cold, dark place! There was no reasonable mechanism, in the Steady State theory, to generate microwaves with such a spectrum. The theory therefore had to be abandoned. Another idea to avoid a singularity, was suggested by two Russians, Lifshitz and Khalatnikov. They said, that maybe a state of infinite density, would occur only if the galaxies were moving directly towards, or away from, each other. Only then, would the galaxies all have met up at a single point in the past. However, one might expect that the galaxies would have had some small sideways velocities, as well as their velocity towards or away from each other. This might have made it possible for there to have been an earlier contracting phase, in which the galaxies somehow managed to avoid hitting each other. The universe might then have re-expanded, without going through a state of infinite density. When Lifshitz and Khalatnikov made their suggestion, I was a research student, looking for a problem with which to complete my PhD thesis. Two years earlier, I had been diagnosed as having ALS, or motor neuron disease. I had been given to understand that I had only two or three years to live. In this situation, it didn't seem worth working on my PhD, because I didn't expect to finish it. However, two years had gone by, and I was not much worse. Moreover, I had become engaged to be married. In order to get married, I had to get a job. And in order to get a job, I needed to finish my thesis. 视需要减点吧

177 评论(12)

相关问答