• 回答数

    7

  • 浏览数

    147

lulubukema
首页 > 考试培训 > 数据挖掘工程师培训

7个回答 默认排序
  • 默认排序
  • 按时间排序

海上花的故事

已采纳

数据分析师需要学习哪里内容?EXCEL 数据处理、 SQL 数据库语言入门,统计分析知识、 SPSS 数据分析、 R 数据挖掘、Python机器学习,

数据挖掘工程师培训

344 评论(11)

dp73255815

1、数学知识

数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。

而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。

2、分析工具

对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。

3、编程语言

对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。

对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。

对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

4、业务理解

业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。

对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。

对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。

4、逻辑思维

这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。

对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。

对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。

对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

5、数据可视化

数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。

对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。

对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。

对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

6、协调沟通

对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。

对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。

对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

7、快速学习

无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。

快速学习非常重要,只有快速进入这一行业,才能抢占先机,获得更多的经验和机会。如果你完全零基础想要尽快进入数据分析行业,选择一家专业的大数据培训机构是个不错的选择。缩短学习周期,提高学习效率,时间即金钱!

119 评论(13)

文武大叔

预测分析:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。随着现在硬件和软件解决方案的成熟,许多公司利用大数据技术来收集海量数据、训练模型、优化模型,并发布预测模型来提高业务水平或者避免风险。NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。分布式存储系统:分布式存储是指存储节点大于一个、数据保存多副本以及高性能的计算网络;利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。当前开源的HDFS也是非常不错的。数据可视化:数据可视化技术是指对各类型数据源(包括Hadoop上的海量数据以及实时和接近实时的分布式数据)进行显示,当前,国内外数据分析展示的产品很多。

337 评论(14)

樱子2200

国内有很多大数据培训机构,以下是其中一些比较知名的机构:

1.中国大数据产业发展联盟:是由国内大数据领域的知名企业和机构共同发起成立的,旨在推动大数据产业的发展和人才培养。该机构提供了多种形式的大数据培训课程,包括线上课程、线下课程、企业内训等。

2.大数据学院:是国内领先的大数据培训机构之一,提供了包括大数据工程师、大数据分析师、数据挖掘工程师等多个方向的培训课程。该机构的课程内容涵盖了大数据技术的各个方面,包括Hadoop、Spark、Storm等大数据技术的应用。

3.云栖大学:是阿里巴巴集团旗下的在线教育平台,提供了多种大数据培训课程,包括大数据分析、数据挖掘、机器学习等方向的课程。该机构的课程内容涵盖了大数据技术的各个方面,同时还提供了实战项目和实验室环境,帮助学员更好地掌握大数据技术。

4.中国电子科技大学大数据学院:是中国电子科技大学下属的大数据学院,提供了包括大数据工程师、大数据分析师、数据挖掘工程师等多个方向的培训课程。该机构的课程内容涵盖了大数据技术的各个方面,同时还提供了实战项目和实验室环境帮助学员更好地掌握大数据技术。

207 评论(12)

恋上这个冬

全国培训机构千千万,别的不说,给几点建议还是可以的:1.看师资,这个是必要的,毕竟好的老师,教学水平会直接影响在学学员的学习质量,那么我们该如何分辨?直接有效的方式就是实地的试听,试听老师的课程,去感受上课的氛围,学生的一个学习状态,大概你就清楚老师的教学水平了。2.看教学方式,授课模式,对于想通过培训转行IT,建议教学模式选择面授,教学方式选择理论+实践+项目实训的学习模式,因为技术行业,实践为主,面授的话,老师可以手把手的带,手把手的教,有什么问题可以随时的问,随时解决,提升自己的学习效率。3.看后期学员的就业情况,看口碑,市场的口碑,是否总体口碑情况较好,了解往届毕业学员的就业情况,平均薪资,这个你可以看他们的就业数据,有条件的可以跟以往学生联系下,了解具体的一个情况,心里就有底了。道听途说不足为信,要实地考察。个人建议,以上三个方面为重点考察要点,至于课程体系,学费,都是可以直观看到的,可以通过朋友,自己的对比来进行考量,就不一一的阐述了。对了还有最后一点,要明白,后期就业好不好,跟自己的技术能力有关,在培训期间好好的学习技术是关键,后期也需要自己不断的学习,那么就业自然是不用担心的。希望想入行IT的小伙伴,都能找到自己满意的培训机构。

95 评论(9)

哆哆的卷妈妈

数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:1、简介如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。2、关于数据挖掘项目这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:他一开始是如何描述这个项目的项目持续了多长时间这个项目的关键问题是什么问题是如何得到解决的在数据挖掘项目中最为困难的阶段是什么最有趣的阶段又是什么在他眼里,客户是怎么样的团队的其他成员又是如何表现的从中获得了什么样的经验在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。3、关于数据挖掘的流程考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。4、解决问题软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。5、收尾在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。

174 评论(8)

小老虎山大王

如果在成都的话,可以了解下邦飞科技,一家有自己研发团队的专业编程培训机构,研发的部分商业会拿给学生学习。教学团队是由一位有十五年开发经验的大牛带领的教师团队。部分老师还是CSDN的客座讲师和高校的外聘讲师。

276 评论(13)

相关问答