• 回答数

    4

  • 浏览数

    341

我还是杰
首页 > 公务员考试 > 公务员考试奥数应用题

4个回答 默认排序
  • 默认排序
  • 按时间排序

史瑞克0111

已采纳

湖南公务员考试有没有奥数题?据了解,湖南省公务员考试已经禁止考奥数题,但是个别地方的公务员考试却屡禁不止。下面上岸鸭小编来给大家介绍一下情况。

公务员考试本身就是对基础能力的考试,在《行政职业能力测验》这门考试中,有一个“数量关系”的题目,数量关系分为数字推理和数学运算,这个就考察基本功不会很难。湖南省公务员考试中的数学运算题目不等于奥数题,难度没有那么大。

但是在国家公务员考试中曾经连续八年行测出了同一道小学奥数题。这个题目最早是在小学奥数竞赛中出现的,被称之为“牛吃草”问题。这类题目来讲对考生还是很有难度的,当然这是国家公务员考试,题目稍微难一点能筛掉很多人择优录取。

如果遇到了奥数题这种难度的题目大家也不要过于紧张,在平常做题的时候学会正着用、逆着用和变着用,举一反三,要学会掌握每一题的思想后,就会做一系列的题,才能在考场上面对行测的每一道题时能游刃有余的答对。

湖南省考资料免费领取

公务员考试奥数应用题

165 评论(10)

傻喵喵123

您好,中公教育为您服务。 公务员考试行测试卷上的容斥问题,从字面意思上来看,就是包含和排斥问题,是一种计数问题。在计数过程中,集合与集合之间有部分是重复包含的,但为了不重复计数,应从他们的和中扣除重复部分,这就是容斥问题。中公教育专家发现,考生在解决这类问题的过程中,一般会借助文氏图来解题。用一个大正方形表示全集-I,圆圈表示集合-A、B,交叉部分就是A∩B,A和B所包含的所有就是A∪B,在全集I内,但是不在集合A和B中的元素就是∅。这是我们在解题过程中常用的文氏图方法,可以使数量关系一目了然。这与我们之前学的逻辑课程中概念间的相互关系中的交叉关系有一定的联系,一起来复习下,概念间的相互关系,大致有五种关系:全同、全异、包含、包含于和交叉,每一种都可以用逻辑语言和文氏图来描述,比如说交叉关系,汽车和人,那他们交叉的部分是什么?机器人?那也就是变形金刚,有些汽车是人,有些人是汽车,这是对概念本身含义的交叉。那如果对概念所代表的数字进行交叉,就形成了数学运算中的容斥问题,同样可以用数学关系和文氏图来描述,比如说汽车有10辆,人有8人,变形金刚有2人,那这个变形金刚的2人既是汽车又是人。容斥问题题干的特点是:题干中会给出多个概念(集合),他们之间有交集关联。常用方法——文氏图法:核心是把重复数的次数变为只数1次,或者说把重叠的面积变成一层。做法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,把遗漏的数目补上,使得计算结果既无遗漏又无重复。例题1:某班有若干名学生,每名学生都至少喜欢一种花,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,既喜欢玫瑰花又喜欢百合花的学生是4人,问全班共有多少人?A、28 B、30 C、32 D、34解析:全班总人数=18+16-4=30人。答案为B。例题2:某班有若干名学生,每名学生都至少喜欢一种花,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,喜欢棉花的有8人,其中同时喜欢玫瑰花和百合花的有6人,喜欢百合花和棉花的有4人,喜欢玫瑰花和棉花的有2人,三种花都喜欢的有1人,问全班共有多少人?A、29 B、30 C、31 D、34解析:根据文氏图法的原则和解答思路,全班共有人:18+16+8-6-4-2+1=31,答案为C。例题3:某班有若干名学生,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,喜欢棉花的有8人,同时喜欢两种花的有4人,同时喜欢三种花的有2人,一种花都不喜欢的有3人,问全班共有多少人?解析:根据文氏图法的原则和解答思路,同时喜欢两种花的4人共加了两次,要减去一次,同时喜欢三种花的2人总共加了三次,所以要减去两次,最后把一种花都不喜欢的3人加起来,故全班共有人:18+16+8-4-2*2+3=37人。中公教育专家认为,在容斥问题中,文氏图法几乎可以大部分的题型,那么,解题原则就两点:一是重叠区域变为一层;二是做到不重不漏,这样在考试中就能做到万无一失了。如有疑问,欢迎向中公教育企业知道提问。

326 评论(15)

小鱼果MM

二十分,多做数列排比练习,最好各省历年真题,可用李永新的教材

105 评论(15)

lucherking18

一、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据;对于概念、性质、公式、法则的理解深刻的程度直接影响方法的选择与运算速度的快慢。概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,熟记一些常用的数据仍是必要的。如20以内的自然数的平方数,简单的勾股数,特殊三角函数值, 、 、 、lg2、lg3、 、e精确到0.001的近似值等。二、掌握运算的通法、通则,灵活运用概念、性质、公式和法则进行运算。教师可以结合教材内容,编制和收集一些灵活性较大的练习题,培养学生运算的灵活性,并引导学生收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。三、学习中注意教师及例题的典型示范,明确解题的目标、计算的步骤及其依据。通过典型示范比较顺利的由理解知识,过渡到应用知识,从而形成运算能力。四、提高运算中的推理能力数学运算的实质是根据运算定义及性质,从已知数据及算式推导出结果的过程,也是一种推理的过程。运算的正确性与否取决于推理是否正确,如果推理不正确,则运算就出错。在运算推理中要特别注意等价变换。五、注意关于数、式的恒等变形(变换)能力的训练。 1.符号变换,例如,去括号、添括号时的符号变换。 2.互逆变换,例如,加法与减法、乘法与除法、乘方与开方、微分与积分等。 3.配方变换。例如,a2 +b2=(a+b)2-2ab 等。 4.分解变换,例如, 已知x-y=3,y-z=5,求x-z,可以分解x-z=(x-y)+(y-z) 。 5.换元变换,例如,引入辅助元素,构造辅助函数,添加辅助线,添设参变量等。六、加强运算练习任何能力都是在一定的实践活动中形成和发展起来的,为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、灵活性、组织性。以题组训练形式培养学生运算过程中思维的深刻性,提高运算能力。七、养成验算的习惯,掌握验算方法 在进行题目求解的运算的过程中或结束时还须对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误,并掌握验算方法。例如,解方程,可以把解代入原方程检验,对于解分式方 程、无 理方程、对数方程、指数方程还可以从未知数的取值范围来检验。检验的方法通常有:还原法、代值法、估值法、逆运算等养成检验、检查的习惯,提高运算过程的思维监控能力,这是形成和发展运算能力的具体要求之一,在学习中不容忽略

82 评论(10)

相关问答