烂醉的猫咪
速度染发
本排名根据狄多涅的纯粹数学全貌和岩波数学百科全书,苏联出版的数学百科全书综合量化分析得出: 二十世纪数学家排名(前100位):1.A.N.Kolmogorov ---科尔莫戈罗夫为概率论建立了公理体系的俄罗斯人,但排第一似乎?在可积与不可积之间,存在一个近可积区域,KAM理论是讲这种近可积区域里运动规律是怎样的。KAM理论是由前苏联科学家科尔莫戈罗夫(A.N.Kolmogorov)、阿诺尔德(V.I.Arnold)和瑞士科学家莫泽(J.K.Moser)三人证明的。2.H.Poincare -----有些人不需要说明,H.庞加莱就是其中之一。3.D.Hilbert -----号称数学之王,无数天才的老师。4.A.E,Nother -----二十世纪代数学执牛耳者,诺特阿姨。5.Von Neumann-----计算机的发明者,地球人都知道。6.H.weyl ---你还知道哪个外尔?7.A.Weil ----韦伊,布尔巴基学派的精神领袖。8.I.M.Gelfand——首届Wolf奖得主,泛函分析大师。9.Wiener -----典型的神童,控制论的创立人。10.Alxsandrff ---11.Ledesque ----实分析开山鼻祖,勒贝格。12.Shafarevich ----13.V.I.Arnold---- A.N.Kolmogorov最得意的门徒,又一个了不起的俄罗斯人。14.Dedekind ------著名的戴德金分割。15.Markov ------马尔可夫?学概率的人都知道。16.Klein -----厄兰根纲领,天才啊。17.E.Artin -----人们对他的一般评价是,大代数学家。18.Jordan -------老觉得他是十九世纪的人,呵呵。19.Siegel-----来自哥廷根 ?首届Wolf奖得主。20.Sobolev -----21.J.P.Serre ——1954年获Fields奖,时年不足28周岁。22.Gorthenideck -----走在时代前面的格罗滕迪克?上帝!神明!23.Whiteny ----惠特尼,微分拓扑的开山鼻祖。24.E.Cartan ----大器晚成的微分几何大家,实在应该排在前十。25.Thom -------突变论创立者。26.Milnor ----与纳什合称普林斯顿那一届的双子星,微分拓扑大师。27.Hadamand——这个人是谁?似曾相识。28.Godel ------哥德尔居然只排28?29.Landau ----巨富的数学家。30.Hecke -----实在没想到这个人有这么牛,听说过赫克代数而已。31.陈省身 ----一代宗师,华人的骄傲。32.Zermelo ---集合论的东东,学过实变得人都知道。33.Puntrijagin ----34.H.Cartan --应该是老嘉当的儿子了,子承父业。35.Hopf ----来自瑞士的拓扑学大师,Harvard大学教授。36.小平邦彦----***人,勤奋的代数几何学家。37.Cantor ----集合论的康托只有37,无奈了38.Chevalley----布饶尔应该排第几呢?39.Picard—— 存在与唯一性定理?40.Whitehead -----来自剑桥的哲学家?41.Caratheodory ——42.G.H.Hardy ---来自剑桥,最“纯粹”的数学家。43.Alfors ---首届Feilds奖得主。44.Selberg——李的同胞,很难想象挪威竟出了那么多一流的数学家。45.Tucker ----塔克,纳什在普林斯顿的老师。经济学中的塔克均衡的创立者。46.高木贞治——***最早具有国际声誉的数学家。47.Lefschetz --普林斯顿王朝的缔造者。48.Banach -----太靠后了,无语。49.Eilenberg --艾伦伯格,和华老很交好。50.Atiyah ----二十世纪后半期英国数学的代表。51.Sinai——52.Smale-----大学时代被系主任追着退学,呵呵。53.志村五郎 ---志村五郎猜想?54.Vinogradov ----维诺格拉朵夫?这个人比华老怎么样?55.Zarisky—— 二十世纪代数几何的代表人物扎里斯基。56.Litelewood ------哈代的好的合作者。57,Nelivanna58,Linnik59,Schur----有限群理论上多次出现的名字,舒尔。60,Luzin -------鲁津啊,A.N.Kolmogorov 的博士生导师。61,Fredholm62,van de Waerden ----读过《代数学》吗?63,Tihonov64,Bernstein ---65,Roknlin66,福原满洲雄67,Hormander68,Turing ——学计算机的人都知道他。69,Minkowsky ----天妒英才啊,感叹。70,Perron71,Darboux72.Levy ----学实变的时候听说过这个人。73,Ramanujan----莫非就是印度那位超天才数学家?呵呵。74,Bronwer75.Borel -----波莱尔,这个人不需要多说。76.Harish-Chandra77,Skolem78,Leray79.Calreman80.Mumford-----芒福德,代数几何学家,Fields奖得主。81.Krull----82.Fisher ---这个人好像不在主流领域。83.Suslin -----84,Schwartz -----复变函数里的施瓦兹?好像不是。85.Schannon ——莫非就是那个“仙农”。86.Deligne -----87.Bochner ——88.中山正——***人有那么牛吗?89.Zeeman -----90.华罗庚 ----华老,这个排名令人欣慰。91.Petrovsky ----92.Geromov ----93.佐腾干夫—— 没有看到Langlands,却有这么多无关的***人,奇怪。94.Russell -------罗素?怎么排在这么后面。95.Birkhoff ----名声很大,具体的不太了解。96.Lindeloff——林德洛夫,应该是在实变函数课上听说过他。97.Teichmuller----98.Brauer ----令人震惊的排名,别把代数学家不当人。99.Garding ----写《数学概览》的瑞典人戈丁?100.Witt---进入前200名的中国数学家还包括:冯康吴文俊周伟良丘成桐萧荫堂进入前1500名的中国数学家还包括:钟开莱项武忠项武义龚升王湘浩伍鸿熙严志达陆家羲陈景润进入前200名的中国数学家还包括: 冯康 吴文俊 周伟良 丘成桐 萧荫堂 进入前1500名的中国数学家还包括: 钟开莱 项武忠 项武义 龚升 王湘浩 伍鸿熙 严志达 陆家羲 陈景润 A.N.Kolmogorov 柯尔莫格洛夫(1903-1987)著作:把实变函数论的方法应用于概率论奠定了近代概率论的基础发表230多种专着和论文荣誉:1980年获沃尔夫奖,1935年获物理数学博士学位。1939年被选为苏联科学院院士,1966年当选为苏联教育科学院院士。任《苏联大百科全书》第二版数学学科的主编。小故事:苏联数学家。1903年4月25日生于坦博夫,1987年10月20日逝世。1925年毕业于莫斯科大学。1930年开始任莫斯科大学教授。柯尔莫哥洛夫是20世纪最有影响的苏联数学家之一。他的数学研究开始于实变函数论,在三角级数收敛性、测度论、积分概念的推广和集合上的一般算子理论等多方面他都得到了重要的结果。他还是现代概率论的开拓者之一。1925年以后,他和辛钦共同把实变函数论的方法应用于概率论,建立了在测度论基础上的概率论的公理化体系,奠定了近代概率论的基础。1930年以后,着重研究应用于具连续时间变量的马尔可夫随机过程的解析方法,发展了「马尔可夫过程」的理论,并把这理论应用于工程技术。此外,柯尔莫哥洛夫在数理逻辑、拓扑学、力学、微分方程、泛函分析、信息论和数学语义学等方面也都有所贡献。他还从事数学史、哲学、数学论证等课题的研究。他创立了函数论和概率论领域的苏联学派。他培养了大批优秀的数学人才。共发表230多种专着和论文。 Poincaré 庞加莱(1854~1912)生于法国 Nancy,卒于巴黎,法国数学家。工作横跨数学与科学多领域,影响二十世纪数学甚钜。Poincaré 家族显赫。他从小在各种学科都表现优秀,在数学上更是被称为「怪物」的资优生。19 岁进入综合工科学校(Ecole Polytechnique),数学表现遥遥领先同侪。不过由于他小时感染白喉,加上先天肌肉运作不很协调,他在体育、美术、音乐上的表现就相当差劲。更令人惊讶的是他的视力很差,因此上课完全靠听力来进行,幸好他有着非凡的记忆力与惊人的空间直觉,在知识的掌握与学习上反而另辟蹊径,以他独特的「内在之眼」见人之所未见。1875 年他毕业后,进入矿业学校(Ecole des Mines)立志成为工程师,但是他的数学天分,还是让他走回数学的道路。1879 年,他在 Hermite 指导下,在巴黎大学取得博士学位,随即应聘到 Caen 大学教书。1881 年,他 27 岁时转到巴黎大学任教,一直到他过世。Poincaré 的数学工作跨越相当多领域,包括:自守函数、动力系统与浑沌的预见。另外,Poincaré 在天体力学的成就,总结在他《天体力学方法》(Les methodes nouvelles de la mecanique celeste, 1892-1899)三册,《天体力学讲义》(Legous de mecanique celeste, 1905-1910)三册。1895年他出版《位相分析》(Analysis situs) 正式为代数拓朴吹起号角,提出基本群 (fundamental group)、同调群 (homology group)、Poincaré 对偶性质(Poincare duality)、三角分割 (triangulation) 等新观念。Poincaré 至少还催生了多复变函数论的领域;机率论的遍历性假设;在代数几何的代数曲线方面,澄清意大利学派的迷团;研究数论里丢番图问题的有理点;流体力学中旋转流体之平衡解;由于研究电子运动,他得到许多与爱因斯坦狭义相对论相同的结果;另外他在物理及其它科学领域也有许多成果,这种非凡的成就让他成为法国科学院唯一横跨所有分组──几何,力学,物理,地学与航海学的院士。行有余力的 Poincaré,为公众所写的科学普及文章却是异常流利,他的三本科学哲学著作结集《科学与假说》(1901),《科学的价值》(1905) 和《科学与方法》(1908),十分畅销并被译成多种文字流传。Emmy Noether 埃米.诺特(1882~1935)德国数学家,生于德国 Erlangen,卒于美国宾州,在数学物理与抽象代数有重大贡献。 E. Noether 的父亲 Max Noether 是 Erlangen 大学的知名数学教授。但18岁前,她并没有表现出对数学的特别兴趣,倒是精通德、英、法三种语言,甚至还考到了英语与法语老师的执照。 不过 E. Noether 从未教过语言,1900起她开始走上对当时女性而言相当艰苦的道路,前三年她在 Erlangen 大学,非正式地修习数学,1903~1904年,由于通过入学考,她到哥廷根大学受教于 Hilbert、Klein 和 Minkowski。1904年她回到 Erlangen 大学,并在1907年获得博士学位。 但是由于所谓的 habilitation 教职只对于男性开放,Noether 留在 Erlangen 大学,协助年老的父亲教授数学,并进行自己的数学研究。在研究成果陆续发表后,她就受邀加入德国数学学会 (DMV),并到处讲演。尽管如此,Noether在Gottingen的同事Edmund Landau还是就决定给她讲师的职位,并说“...当我们的士兵发现他们在一个女人脚下学习的时候,他们会怎么想?”不得不说Landau令人不招人喜欢。最让人不能容忍的是有人问她Noethor是否是一个伟大的女数学家的时候,他说:“我可以作证她是一个伟大的数学家,但是对她是一个女人这点,我不能发誓." 不过,伟大如Einstein和Hilbert的这样的人都对Noether推崇备至。Einstein曾经说Noether是“自妇女开始受到高等教育以来最杰出的最富有创造性的数学天菜”,Hilbert则支持Noether去争取一个讲师的职位,并反驳Landau说:“我不认为候选人的性别是反对她成为讲师的理由,评议会毕竟不是澡堂。” 1915年 E. Nother 应 Hilbert 与 Klein 之邀,到哥廷根讲学,并在他们的大力支持下,在四年后获得教职。她在哥廷根待到1933年,由于她的犹太血统,被纳粹压力下的学校当局免职,于是她远赴美国,任教于宾州 Bryn Mawr(女子)学院直到两年后去世。 E. Noether 最受瞩目的工作可能是1915年证明的 Noether 定理,她发现了物理系统的对称性与守恒律的关系,这个深刻又基本的洞见,甚至影响到日后爱因斯坦广义相对论的研究。 后来 E. Noether 开始转到抽象代数的领域,并为环论 (ring theory) 尤其是理想论 (ideal theory) 打下坚实的基础。她的一个荷兰学生,Van der Waerden,所着的《近世代数》,影响无远弗届,其中第二册,多半都是 E. Noether 的工作成果。 E. Noether 的人缘很好,也非常照顾学生,她的学生们拥有一个昵称──「Noether 的小孩」。虽然她的教学极为严峻,但是从中获益的学生,都对她终身难忘。 D.Hilbert 希尔伯特(1862~1943)德国数学家,生于东普鲁士哥尼斯堡(前苏联加里宁格勒)附近的韦劳。 中学时代,希尔伯特就是一名勤奋好学的学生,对于科学特别是数学表现出浓厚的兴趣,善于灵活和深刻地掌握以至应用老师讲课的内容。1880年,他不顾父亲让他学法律的意愿,进入哥尼斯堡大学攻读数学。1884年获得博士学位,后来又在这所大学里取得讲师资格和升任副教授。1893年被任命为正教授,1895年,转入格廷根大学任教授,此后一直在格廷根生活和工作,于是930年退休。在此期间,他成为柏林科学院通讯院士,并曾获得施泰讷奖、罗巴切夫斯基奖和波约伊奖。1930年获得瑞典科学院的米塔格-莱福勒奖,1942年成为柏林科学院荣誉院士。 希尔伯特是一位正直的科学家,第一次世界大战前夕,他拒绝在德国政府为进行欺骗宣传而发表的《告文明世界书》上签字。战争期间,他敢干公开发表文章悼念“敌人的数学家”达布。希特勒上台后,他抵制并上书反对纳粹政府排斥和迫害犹太科学家的政策。由于纳粹政府的反动政策日益加剧,许多科学家被迫移居外国,曾经盛极一时的格廷根学派衰落了,希尔伯特也于1943年在孤独中逝世。 希尔伯特是对二十世纪数学有深刻影响的数学家之一。他领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家。希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题。 按时间顺序,他的主要研究内容有:不变式理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、“希尔伯特空间”等。在这些领域中,他都做出了重大的或开创性的贡献。 希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:“只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。”在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。他说:“在我们中间,常常听到这样的呼声:这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有不可知。”三十年后,1930年,在接受哥尼斯堡荣誉市民称号的讲演中,针对一些人信奉的不可知论观点,他再次满怀信心地宣称:“我们必须知道,我们必将知道。” 希尔伯特的《几何基础》(1899)是公理化思想的代表作,书中把欧几里得几何学加以整理,成为建立在一组简单公理基础上的纯粹演绎系统,并开始探讨公理之间的相互关系与研究整个演绎系统的逻辑结构。1904年,又着手研究数学基础问题,经过多年酝酿,于二十年代初,提出了如何论证数论、集合论或数学分析一致性的方案。他建议从若干形式公理出发将数学形式化为符号语言系统,并从不假定实无穷的有穷观点出发,建立相应的逻辑系统。然后再研究这个形式语言系统的逻辑性质,从而创立了元数学和证明论。希尔伯特的目的是试图对某一形式语言系统的无矛盾性给出绝对的证明,以便克服悖论所引起的危机,一劳永逸地消除对数学基础以及数学推理方法可靠性的怀疑。然而,1930年,年青的奥地利数理逻辑学家哥德尔(K。G?del,1906~1978)获得了否定的结果,证明了希尔伯特方案是不可能实现的。但正如哥德尔所说,希尔伯特有关数学基础的方案“仍不失其重要性,并继续引起人们的高度兴趣”。 希尔伯特的著作有《希尔伯特全集》(三卷,其中包括他的著名的《数论报告》)、《几何基础》、《线性积分方程一般理论基础》等,与其他合著有《数学物理方法》、《理论逻辑基础》、《直观几何学》、《数学基础》。Von Neumann 冯.诺依曼(1903-1957),匈裔美籍数学家,生于布达佩斯,卒于华盛顿特区。他是二十世纪少见的数学科学通才,在许多领域都有重要的基本贡献。 Von Neumann 是犹太人。原姓 Neumann,因为父亲买下爵位,才加上贵族专称的“von”。他自幼颖异,记忆力过人,对数学有惊人的天份,但父亲希望他从商,几经折冲,他同时在布达佩斯大学学数学,又在柏林大学学化学(后转到苏黎士学化工)。但即使在苏黎士,他仍与知名数学家 Weyl 与 Polya 交游。Polya 曾经这样描述 Von Neumann “他是我唯一害怕的学生。在课堂如果我提出一个当时未解的问题,通常他在下课后就会直接来找我,给我几页完整的解答。”1926年 Von Neumann 以一篇集合论的论文获得布达佩斯大学的博士学位,然后以 Rockefeller 奖学金前往哥廷根大学跟随 Hilbert 作博士后研究,并在柏林,汉堡讲学。Von Neumann 在二十余岁时已经是数学圈中公认的年轻天才。1930年 Von Neumann 应 Veblen 之邀,到普林斯顿大学客座,1931年普林斯顿大学即授予教授职位,1933年他成为新成立的普林斯顿高等研究院终身职院士。Von Neumann 的家庭宴会在普林斯顿非常热闹知名,这在数学家中是很少见的。综论 Von Neumann 的数学成就,大致如下:(1)初期工作以数理逻辑(尤其是公设集合论)、测度论、实分析为主。(2)在《Mathematische Grundlagender Quantenmachanik》(1932)中, Von Neumann 为当时的量子力学打下坚实的数学基础。(3)自1929起,Von Neumann 即从事算子代数的先驱性工作,在1930-40年间 Von Neumann 与 Murray 为后来所谓的 Von Neumann 代数写下系列基本的文章。(4)Von Neumann 为对局论的发明人,他首先证明零和对局的 minmax 定理,并与 Morgenstern 合着《对局论与经济行为》,对社会科学、生命科学影响深远。(5)Ergdic(遍历性)定理的证明(1938)。(6)Von Neumann 对应用数学的兴趣,从流体力学始,并对非线性偏微分方程产生莫大的兴趣。而对他而言,数值计算是最可能的「实验」方法,这也使 Von Neumann 成为今日计算机之奠基者,并因此发展 cellular automata 的理论。另外 Von Neumann 也是氢弹的催生者,1940年起他即热心参与美国的各项国防计划或实验室,也因此获得各式各样的数学或非数学的奖章。 沃尔夫数学奖奖项名称: 沃尔夫数学奖创办时间: 1976年1月主办单位: 沃尔夫基金会沃尔夫数学奖是沃尔夫奖的一个奖项,它和菲尔兹奖被共同誉为数学界的最高荣誉。获得该奖项的唯一一名华人是已故数学家陈省身。由于菲尔兹奖只授予40岁以下的的年轻数学家,所以年纪较大的数学家没有获奖的可能。恰巧1976年1月,R. 沃尔夫及其家族捐献一千万美元成立了沃尔夫基金会,其宗旨是为了促进全世界科学.艺术的发展。沃尔夫基金会设有:数学.物理.化学.医学.农业五个奖(1981年又增设艺术奖)。1978年开始颁发,通常是每年颁发一次,每个奖的奖金为10万美元,可以由几人分得。由于沃尔夫数学奖具有终身成就奖的性质,所有获得该奖项的数学家都是享誉数坛.闻名遐迩的当代数学大师,他们的成就在相当程度上代表了当代数学的水平和进展。该奖的评奖标准不是单项成就而是终身贡献,获奖的数学大师不仅在某个数学分支上有极深的造诣和卓越贡献,而且都博学多能,涉足多个分支,且均有建树,形成了自己的著名学派,他们是当代不同凡响的数学家。R. 沃尔夫1887年生于德国,其父是汉诺威城的五金商人。沃尔夫曾在德国研究化学,并获得博士学位,后移居古巴。他用了近20年的时间,经过大量试验.历尽艰辛,成功地发明了一种从熔炼废渣中回收铁的方法,从而成为百万富翁。他是沃尔夫基金会的倡导者和主要捐献人。沃尔夫于1981年逝世。
huangmanjing
恰亚诺夫,马尔可夫,格奥尔基·阿尔卡季耶维奇·阿尔巴托夫,叶戈尔·铁木罗维奇·盖达尔,阿贝尔·格泽维奇·阿甘别吉扬,这几位人物都是苏联当时特别出色的经济学家或者其他领域的专家。
优质职业资格证问答知识库