• 回答数

    2

  • 浏览数

    337

木本色计
首页 > 英语培训 > pca英语怎么读

2个回答 默认排序
  • 默认排序
  • 按时间排序

我是中吃货

已采纳

由主成分分析在统计分析中,主成分分析(英语:Principal components analysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。主成分分析由卡尔·皮尔逊於1901年发明[1],用於分析数据及建立数理模型。其方法主要是通过对共变异数矩阵进行本征分解[2],以得出数据的主成分(即本征向量)与它们的权值(即本征值[3])。PCA是最简单的以本征量分析多元统计分布的方法。其结果可以理解为对原数据中的方差做出解释:哪一个方向上的数据值对方差的影响最大?换而言之,PCA提供了一种降低数据维度的有效办法;如果分析者在原数据中除掉最小的本征值所对应的成分,那麼所得的低维度数据必定是最优化的(也即,这样降低维度必定是失去讯息最少的方法)。主成分分析在分析复杂数据时尤为有用,比如人脸识别。PCA是最简单的以本征量分析多元统计分布的方法。通常情况下,这种运算可以被看作是揭露数据的内部结构,从而更好的解释数据的变量的方法。如果一个多元数据集能够在一个高维数据空间坐标系中被显现出来,那么PCA就能够提供一幅比较低维度的图像,这副图像即为在讯息最多的点上原对象的一个‘投影’。这样就可以利用少量的主成分使得数据的维度降低了。PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。

pca英语怎么读

303 评论(15)

唐小七7

主成分分析(英语:Principal components analysis,PCA)是一种统计分析、简化数据集的方法。

它利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分(Principal Components)。具体地,主成分可以看做一个线性方程,其包含一系列线性系数来指示投影方向。PCA对原始数据的正则化或预处理敏感(相对缩放)。

1、将坐标轴中心移到数据的中心,然后旋转坐标轴,使得数据在C1轴上的方差最大,即全部n个数据个体在该方向上的投影最为分散。意味着更多的信息被保留下来。C1成为第一主成分。

2、C2第二主成分:找一个C2,使得C2与C1的协方差(相关系数)为0,以免与C1信息重叠,并且使数据在该方向的方差尽量最大。

3、以此类推,找到第三主成分,第四主成分……第p个主成分。p个随机变量可以有p个主成分。

主成分分析经常用于减少数据集的维数,同时保留数据集当中对方差贡献最大的特征。这是通过保留低维主成分,忽略高维主成分做到的。这样低维成分往往能够保留住数据的最重要部分。但是,这也不是一定的,要视具体应用而定。由于主成分分析依赖所给数据,所以数据的准确性对分析结果影响很大。

使用统计方法计算PCA

以下是使用统计方法计算PCA的详细说明。但是请注意,如果利用奇异值分解(使用标准的软件)效果会更好。

我们的目标是把一个给定的具有 M 维的数据集X 变换成具有较小维度 L的数据集Y。现在要求的就是矩阵Y,Y是矩阵X Karhunen–Loève变换。

346 评论(11)

相关问答