花的姿态zqr
非负整数--不是负的整数--包括0和正整数(如1,2,3...) 有理数就是可表示为有限小数或无限循环小数的数(有理数为什么有理?见下) 正整数--正的整数--1,2,3等等 负整数--负的整数-- 如-1,-2,-3等等 ----------------------------------------------------------------------------------------------- .“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”.事实上,这似乎是一个翻译上的失误.有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”.中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”.^_^
奔跑de小土豆
N:非负整数集合或自然数集合{0,1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
R:实数集合(包括有理数和无理数)
其他:
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
扩展资料
集合的特性:
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
优质英语培训问答知识库