悠悠lvying
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。扩展资料:方差(Variance),应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。方差的算术平方根称为该随机变量的标准差。方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。方差和标准差是测度数据变异程度的最重要、最常用的指标。标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。
赫拉克里斯
设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
眼角落下的泪
均方差就是标准差计算δ,要看样本量是等概率,还有概率的。如果没有概率,直接计算离差的平方=(样本金额-平均值)的平方,然后所以样本量的离差平方求和,再除以(样本个数-1),然后开根号,就是标准差。如果有概率的话,只需要在计算合计数时考虑加权平均,不用再除以个数-1,直接开根号。
qingqing829
一,在中文中,均方差肯定是指标准差,至于这个称呼的来源,已经无从查找。 至于英语,MSE绝对不是均方差的英文,MSE一般被翻译为“均方误差”,还有一个MSD一般被翻译为“均方差”,但是它的英文定义似乎和中文中的含义也是不同的。 因此,究竟中文中的“均方差”从何而来,不得而知,但是它的含义就是指标准差。总的结论是: 1,中文中,均方差=标准差。 2,MSE不是中文中常说的“均方差”的英文来源。 二,均方差的计算公式如下:设xi为第i个元素,均方差 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根。比如说:x=[1 2 3 4 5],则平均值是(1+2+3+4+5)/5=3;s1=[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,均方根就为s1的平方根,等于1.414。
大料酱VS小麋鹿
标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。
张小电1301
有区别;标准误(SEM)不是标准差(SD),是多个样本平均数的标准差。
SD:标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squarederror,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。
假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,
标准差也被称为标准偏差,或者实验标准差,公式为
SEM(标准误)
英文:Standard Error of Mean
标准误,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度,反映的是样本均数之间的变异。标准误不是标准差,是多个样本平均数的标准差。
标准误用来衡量抽样误差。标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大。因此,标准误是统计推断可靠性的指标。
标准差与标准误都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。
拓展资料
分析方法
根据资料设计类型的不同,有以下两种方差分析的方法:
1、对成组设计的多个样本均值比较,应采用完全随机设计的方差分析,即单因素方差分析。
2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析 [1] 。
两类方差异同
两类方差分析的异同:
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差 [1] 。