520mengcheng
[编辑本段]数学简介 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。 数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。 基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 词源 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 (拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。[编辑本段]数学的本质 数学的本质是什么?为什么数学可以运用在所有的其它科目上? 数学是研究事物数量和形状规律的科目 如果要深入的研究其本质及其扩展问题,就必须引入【全集然文明】专有名词了 其实数学的本质是:一门研究【储空】的科目 自然万物都有其存储的空间,这种现象称之为【储空】 要判断一个事物是否为“储空”其实很简单:只要能够套入“在××里”的××就是“储空”(包括具体和抽象)。于是大家将会发现,所有的事物都可以套入其中,也就是说:自然万物都只是不同的“储空”而已。 于是人们也发现:【代数】就是研究【储空量】的科目;【几何】就是研究【储空形状】的科目。而既然自然万物都只是不同的储空而已,那么数学当然也就可以通用于所有的科目之中了! 扩展信息: 1.更多的证据 因为一个除真空外的储空都是有【储隔】(储空隔膜)的,于是人们在其它科目中使用数字就必须用【单位】来区分各种不同的储空,如:个、头、条、小时、牛、焦耳、欧姆、安培等等,可以说离开了单位,数字几乎毫无意义。 并且各种名词的【定义】也是相关储空的储隔,就是区别于其他事物的地方。 2.新数学等式和计算模型 异储空计算模型 异储空等式【异储空等式】比如:1个人 异等于 5个苹果 ,就是说:一个人可以得到5个苹果,或一个人和5个苹果相联系(任何联系都可以);异等号就是等号=下面加个o(储空标志);这样就可以简单的描述很多日常生活中碰到的计算。而且您还可以通过右图的【异储空计算模型】(最简单的模型),来计算一些事物。 3.其他几何领域 当然有,其实一直都有两个巨大的几何领域被人们长期的忽视,那就是【文字几何】与【功能几何】。 (1)文字几何:当一些有特定含义的文字按照特殊的组合和形状排列下来就会出现各种特殊的功能和特性。就像我们最常见的“化学元素周期表”、“文字图表”、“数学计算模型”等等。 (2)功能几何:各种形状都是拥有各种不同的功能的!如球形可以做大容量的容纳物质,交叉有利于物质传播等等。所以我们应该仔细研究和探讨各种形状的各种特殊功能! 使用全集然文明逻辑:如果自然万物有共同的本质和规律,那么它们必然可以用来推导各个科目的本质和规律,并推理出该科目内的新内容。于是我们发现了数学就是研究“储空”的一个科目,并推理出了各种新领域。 注:(等式、四则运算、解方程式的本质都可以用【储空】内部规律推理出来)[编辑本段]数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有着名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”[编辑本段]数学的分类 离散数学 模糊数学 数学分支 1.算数 2.初等代数 3.高等代数 4. 数论 5.欧式几何 6.非欧式几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.拓扑几何学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和数量统计 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学 详细请见词条:数学分支 广义的数学分类 从纵向划分: 1、初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2、变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3、近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4、现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 注:希尔伯特的23个问题—— 在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1、基础数学(英文:Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2、应用数学。简单地说,也即数学的应用。 3 、计算数学。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4、概率统计。分概率论与数理统计两大块。 5、运筹学与控制论。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。[编辑本段]符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部份数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。[编辑本段]数学的发展史 世界数学发展史奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
boneash2004
名称来源 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。 数学史 基础数学的知识与运用是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,之后会发现许多应用。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 [编辑本段]数学的本质 数学的本质是什么?为什么数学可以运用在所有的其它科目上? 数学是研究事物数量和形状规律的科目。 如果要深入的研究其本质及其扩展问题,就必须引入【全集然文明】专有名词了。 其实数学的本质是:一门研究【储空】的科目。 自然万物都有其存储的空间,这种现象称之为【储空】。 要判断一个事物是否为“储空”其实很简单:只要能够套入“在××里”的××就是“储空”(包括具体和抽象)。于是大家将会发现,所有的事物都可以套入其中,也就是说:自然万物都只是不同的“储空”而已。 于是人们也发现:【代数】就是研究【储空量】的科目;【几何】就是研究【储空形状】的科目。而既然自然万物都只是不同的储空而已,那么数学当然也就可以通用于所有的科目之中了! 1.更多的证据 因为一个除真空外的储空都是有【储隔】(储空隔膜)的,于是人们在其它科目中使用数字就必须用【单位】来区分各种不同的储空,如:个、头、条、小时、牛、焦耳、欧姆、安培等等,可以说离开了单位,数字几乎毫无意义。 并且各种名词的【定义】也是相关储空的储隔,就是区别于其他事物的地方。 2.新数学等式和计算模型 异储空计算模型 异储空等式【异储空等式】比如:1个人 异等于 5个苹果 ,就是说:一个人可以得到5个苹果,或一个人和5个苹果相联系(任何联系都可以);异等号就是等号=下面加个o(储空标志);这样就可以简单的描述很多日常生活中碰到的计算。而且您还可以通过右图的【异储空计算模型】(最简单的模型),来计算一些事物。 3.其他几何领域 当然有,其实一直都有两个巨大的几何领域被人们长期的忽视,那就是【文字几何】与【功能几何】。 (1)文字几何:当一些有特定含义的文字按照特殊的组合和形状排列下来就会出现各种特殊的功能和特性。就像我们最常见的“化学元素周期表”、“文字图表”、“数学计算模型”等等。 (2)功能几何:各种形状都是拥有各种不同的功能的!如球形可以做大容量的容纳物质,交叉有利于物质传播等等。所以我们应该仔细研究和探讨各种形状的各种特殊功能! 使用全集然文明逻辑:如果自然万物有共同的本质和规律,那么它们必然可以用来推导各个科目的本质和规律,并推理出该科目内的新内容。于是我们发现了数学就是研究“储空”的一个科目,并推理出了各种新领域。 注:等式、四则运算、解方程式的本质都可以用【储空】内部规律推理出来[编辑本段]数学研究的各领域 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。 数量 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。数论还包括两个被广为探讨的未解问题:孪生素数猜想及哥德巴赫猜想。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:艾礼富数,它允许无限集合之间的大小可以做有意义的比较。 结构 许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。 空间 空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演著核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。在其许多分支中,拓扑学可能是二十世纪数学中有着最大进展的领域,并包含有存在久远的庞加莱猜想及有争议的四色定理,其只被电脑证明,而从来没有由人力来验证过。 基础与哲学 为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,就连被誉为“博大精深,富于创举”的数学家Pioncare也把集合论比作有趣的“病理情形”,甚至他的老师Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”.对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚.”他还指出:“数学的本质在于它的自由性,不必受传统观念束缚。”这种争辩持续了十年之久。Cantor由于经常处于精神压抑之中,致使他1884年患了精神分裂症,最后死于精神病院。 然而,历史终究公平地评价了他的创造,集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。 恩格斯说:“数学是研究现定世界的数量关系与空间形式的科学。”[编辑本段]数学的分类 离散数学 模糊数学 数学的五大分支 1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学 数学分支 1.算术 2.初等代数 3.高等代数 4. 数论 5.欧式几何 6.非欧式几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15. 实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学 广义的数学分类 从纵向划分: 1.初等数学和古代数学:这是指17世纪以前的数学。主要是古希腊时期建立的欧几里得几何学,古代中国、古印度和古巴比伦时期建立的算术,欧洲文艺复兴时期发展起来的代数方程等。 2.变量数学:是指17--19世纪初建立与发展起来的数学。从17世纪上半叶开始的变量数学时期,可以分为两个阶段:17世纪的创建阶段(英雄时代)与18世纪的发展阶段(创造时代)。 3.近代数学:是指19世纪的数学。近代数学时期的19世纪是数学的全面发展与成熟阶段,数学的面貌发生了深刻的变化,数学的绝大部分分支在这一时期都已经形成,整个数学呈现现出全面繁荣的景象。 4.现代数学:是指20世纪的数学。1900年德国著名数学家希尔伯特(D. Hilbert)在世界数学家大会上发表了一个著名演讲,提出了23个预测和知道今后数学发展的数学问题(见下),拉开了20世纪现代数学的序幕。 注:希尔伯特的23个问题—— 在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。 希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。 现在只列出一张清单: (1)康托的连续统基数问题。 (2)算术公理系统的无矛盾性。 (3)只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。 (4)两点间以直线为距离最短线问题。 (5)拓扑学成为李群的条件(拓扑群)。 (6)对数学起重要作用的物理学的公理化。 (7)某些数的超越性的证明。 (8)素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。 (9)一般互反律在任意数域中的证明。 (10)能否通过有限步骤来判定不定方程是否存在有理整数解? (11)一般代数数域内的二次型论。 (12)类域的构成问题。 (13)一般七次代数方程以二变量连续函数之组合求解的不可能性。 (14)某些完备函数系的有限的证明。 (15)建立代数几何学的基础。 (16)代数曲线和曲面的拓扑研究。 (17)半正定形式的平方和表示。 (18)用全等多面体构造空间。 (19)正则变分问题的解是否总是解析函数? (20)研究一般边值问题。 (21)具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。 (22)用自守函数将解析函数单值化。 (23)发展变分学方法的研究。 从横向划分: 1.基础数学(Pure Mathematics)。又称为理论数学或纯粹数学,是数学的核心部分,包含代数、几何、分析三大分支,分别研究数、形和数形关系。 2.应用数学(Applied mathematics)。简单地说,也即数学的应用。 3 .计算数学(Computstion mathematics)。研究诸如计算方法(数值分析)、数理逻辑、符号数学、计算复杂性、程序设计等方面的问题。该学科与计算机密切相关。 4.概率统计(Probability and mathematical statistics)。分概率论与数理统计两大块。 5.运筹学与控制论(Op-erations research and csntrol)。运筹学是利用数学方法,在建立模型的基础上,解决有关人力、物资、金钱等的复杂系统的运行、组织、管理等方面所出现的问题的一门学科。[编辑本段]符号、语言与严谨 在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。 我们现今所使用的大部份数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。 严谨是数学证明中很重要且基本的一部份。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。[编辑本段]数学的发展史 世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικ??(mathematikós)意思是“学问的基础”,源于μ?θημα(máthema)(“科学,知识,学问”)。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。 从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。 数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”[编辑本段]国外数学名家 高斯 数 学 天 才 —— 高 斯 高斯是德国数学家、物理学家和天文学家。 高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出。7岁那年,高斯第一次上学了。 在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。说完高斯也算完并把写有答案的小石板交了上去,当时只有他写的答案是正确的。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称。 牛顿 牛顿是英国物理学家和数学家。 在学校里,牛顿是个古怪的孩子,就喜欢自己设计、自己动手,做凤筝、日规、滴漏之类器物。他对周围的一切充满好奇,但并不显得特别聪明。 后来,家里叫他停学,到他母亲的农场上去帮忙。在他母亲的农场上,看到一个苹果落在地上,便开始捉摸,这种将苹果往下拉的力会不会也在控制着月球。由此牛顿推导出物体的下落速度改变率与重力的大小成正比,而重力大小与距地心距离的平方成反比。后来牛顿的棱镜实验也使他一举成名。 牛顿有两句名言是大家所熟知的。他在一封信中写道:“如果我比别人看得远些,那是因为我站在巨人们的肩上。”据说他还讲过:“我不知道世人对我怎么看;但在我自己看来就好像只是一个在海滨嬉戏的孩子,不时地为比别人找到一块光滑的卵石或一只更美丽的贝壳而感到高兴,而我面前的浩瀚的真理海洋,却还完全是个谜。 中国古代数学发展史 数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
我们的季节e
数理化就是学科上的数学,物理,化学,一般被称作理科,与其对应的是文科,有语文,英语,历史,政治(和其他一些语言学科)。基本信息中文名称数理化外文名μάθημα类 别数学,物理,化学, 属 性任何事物的可量度英 语Mathematics目录1数理化 2杂志折叠编辑本段数理化数理化就是学科上的数学,物理,化学,,一般被称作理科,与其对应的是文科,为:语文,英语,历史,政治(和其他一些语言学科).折叠数学(mathematics;希腊语:μαθηματικ?)这一词在西方源自于古希腊语的μ?θημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικ??(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。(拉丁文:Mathemetica)原意是数和数数的技术。我国古代把数学叫算术,又称算学,最后才改为数学。数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因著和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。物理化学地理是中学的学科.折叠物理(Physics)拼音:wù lǐ,英文:physics全称物理学。“物理”一词的最先出自希腊文φυσικ,原意是指自然。古时欧洲人称呼物理学作“自然哲学”。从最广泛的意义上来说即是研究大自然现象及规律的学问。汉语、日语中“物理”一词起自于明末清初科学家方以智的百科全书式著作《物理小识》。在物理学的领域中,研究的是宇宙的基本组成要素:物质、能量、空间、时间及它们的相互作用;借由被分析的基本定律与法则来完整了解这个系统。物理在经典时代是由与它极相像的自然哲学的研究所组成的,直到十九世纪物理才从哲学中分离出来成为一门实证科学。物理学与其他许多自然科学息息相关,如数学、化学、生物和地理等。特别是数学、化学、生物学。化学与某些物理学领域的关系深远,如量子力学、热力学和电磁学,而数学是物理的基本工具。化学(chemistry)是一门研究物质的组成、结构、性质、变化以及变化规律的科学。它对我们认识和利用物质具有重要的作用,世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它与人类进步和社会发展的关系非常密切,它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,化学的贡献在其中起了重要的作用。化学是重要的基础科学之一,在与物理学、生物学、自然地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。例如,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他星体的化学成分的分析,得出了元素分布的规律,发现了星际空间有简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,还丰富了自然辩证法的内容!它研究的内容主要包括:物质的组成、结构、性质、变化及其相关的现象、规律和成因,以及物质在自然界中的存在、人工合成和应用等。通俗的说,学习化学可以了解化学变化的原理,搞清发生在我们身边的许多“为什么”。比如溶洞中的钟乳石、石笋、石柱是怎样形成的?金属为什么容易生锈?国庆节的焰火为什么五彩缤纷?泡沫灭火器为什么能喷出那么多泡沫而灭火?掌握这些原理,控制反应的条件,使其向着有利于人类的方向发展。学习化学可以更好的利用自然资源,提炼物质并合成新物质。从地下开采出的煤和石油可以提炼出汽油、煤油、柴油等燃料,还可以生产出塑料、纤维、橡胶等化工原料,进一步加工还可以制得医药、炸药、农药、化肥、染料等多种化工产品。学习化学可以帮助人类在能源、材料、生命现象、生态环境等多领域中研究创新,开辟新的道路。目前,化学已开始向油页岩、生物物料、太阳能、核能等新能源进军;向先进的光子材料、复合材料等发起挑战。随着科学的飞速发展,学科间的相互渗透,自然科学与社会科学的相互交叉,无论将来从事什么工作,都必须具备起码的化学基础知识。化学是一门以实验为基础的科学。折叠编辑本段杂志《数理化学习》杂志是黑龙江省教育厅主管的教育学术类期刊、由哈尔滨师范大学编辑出版。其初中版国内刊号:CN23-1186/0,国际刊号:ISSN1007-8533,1985年创刊,邮发代号:14-188;高中版国内刊号:CN23-1188/O,国际刊号:ISSN1007-8525,1987年创刊,邮发代号:14-186;综合版刊号与初中版相同,创刊时间2007年。实践探索、教育创新、课改导航、新发现、教学新方法1、观点鲜明,紧扣课改,具有较强创造性和实践性;来稿最好通过电子邮件发送slhxxzzs@ 126. com,也可使用打印稿邮寄文稿字数在2100字内为宜;在文章标题下分别注明邮政编码、作者单位、作者姓名、电话。2. 论文中如有计量单位,请一律采用国际标准书写。3.来稿请在电子邮件主题中标注作者姓名及文章名,注明投稿字样。4.优秀作品将在《数理化学习》杂志上发表, 赠送样本2册。《数理化学习》被新闻出版总署,中国知网收录。
优质英语培训问答知识库