• 回答数

    5

  • 浏览数

    336

超越经典65
首页 > 英语培训 > 奇偶函数英文

5个回答 默认排序
  • 默认排序
  • 按时间排序

维尼yuan

已采纳

对一个函数来说,代入一对相反数,相加为0,就是奇函数,但是要注意,定义域必须关于原点对称,如果只能取到1,—1取不到,则非奇非偶,如果一对相反数代入后函数值相等,则为偶函数但是要注意定义域,或者说图像关于Y轴对称的是偶函数,关于原点中心对称的是奇函数。这是我的理解,希望对你有帮助。

奇偶函数英文

255 评论(13)

雁归来无痕

奇函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。偶函数:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。特别地:1.如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。2.如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。函数奇偶性的证明方法一般有:⑴定义法:函数定义域是否关于原点对称,对应法则是否相同。⑵图像法:f(x)为奇函数f(x)的图像关于原点对称 点(x,y)→(-x,-y) f(x)为偶函数f(x)的图像关于Y轴对称 点(x,y)→(-x,y)⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。⑷性质法:利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数。

249 评论(9)

布川依夫

课本是从代数解析式的角度定义偶函数和奇函数的。其实偶函数和奇函数也可以从几何的角度来定义,这样的定义和代数解析式的定义本质上是一致的,只不过表达方式不同,看问题的立场不同。如下图,整个函数图象关于y轴对称,该函数称为偶函数;整个函数图象关于坐标原点对称,该函数称为奇函数。

通过函数图象,很方便就可以写出偶函数的解析式:对于图像上的任意一点(x ,f(x)),关于y轴对称的点就是(-x ,f(x)),由于轴对称点的纵坐标是一样的,因此解析式是 f(x) = f(-x),你看这不就是书本关于偶函数的代数解析式定义。

同样,很方便就可以写出奇函数的解析式:对于图像上的任意一点(x ,f(x)),关于坐标原点对称的点就是(-x ,-f(x)),由于原点对称的两点的纵坐标是相反数,因此解析式是 f(x) = -f(-x)。

我们学过的一次函数 y=kx+b 就是奇函数,二次函数 y=x^2 就是偶函数,还可以举例出好多个。比如日后会学到的三角函数也具有奇偶性。

98 评论(12)

兔了里个酱酱

f(x)=f(-x)偶函数-f(x)=f(-x) 奇函数

280 评论(13)

安好即可

函授奇偶性主要是看函数图像,分别关于原点和y轴对称,然后通过对称的特点去,给出某些点,从而求其他的未知的点。函数的意义通常是从函数的图像上去理解的。比如有个点(1,1)如果在奇函数上,那么可以判断(-1,-1)也在这个函数上,因为关于原点是对称的,如果是在偶函数上,那么(-1,1)也在偶函数上。

103 评论(15)

相关问答