michelleyi
一、自变量的数据类型不同
多元线性回归:多元线性回归的自变量X的数据类型是连续型变量。
多重线性回归:多重线性回归的自变量X的数据类型可能存在多种数据类型,例如性别等的离散型变量。
二、方程不同
多元线性回归:多元线性回归的方程中没有随机变量。
多重线性回归:多重线性回归的方程中有随机变量。
三、因变量的值不同
多元线性回归:多元线性回归的回归方程求出的是因变量y的平均值。
多重线性回归:多重线性回归的回归方程求出的是因变量y的平均预测值。
扩展资料
多重线性回归的条件:
1、因变量为连续性变量
2、自变量不少于2个
3、因变量与自变量之间存在线性关系
4、样本个体间相互独立(由Durbin-Waston检验判断)
5、等方差性:各X值变动时,相应的Y有相同的变异度
6、正态性:给定各个X值后,相应的Y值服从正态分布
7、不存在多重共线性
参考资料来源:百度百科-多元线性回归
百度百科-多重线性回归
游钓1000
广义线性模型从字面上来理解应该是比一般线性模型更“厉害”的一种,呵呵。一般我们常常接触的logistic回归,Probit回归,Poisson回归都是广义线性模型的一种;单因素方差分析、析因设计、重复测量方差分析、多元线性回归之类的都算是一般线性模型(glm)的特例吧。我记得张文彤曾经说过广义线性模型是一般线性模型的推广,主要从两个方面:1.通过指定因变量的分布,如Poisson回归等2.通过链接函数,把因变量的取值变换到自变量的线性预测取值范围内。如logistic回归
以心为马
线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。线性回归线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。