蛋蛋徐要发疯
智能视频分析摄像机视频分析方法主要有两类:
1、背景减除方法
利用当前图象和背景图象的差分(SAD)来检测出运动区域的一种方法。可以提供比较完整的运动目标特征数据。精确度和灵敏度比较高,具有良好的性能表现。背景的建模是背景减除法的技术关键。一般采用在系统设置时期设置系统自适应学习时间来建模,根据背景实际”热闹程度“选取3-5分钟的学习时间。一般系统建模完成后,随着时间的变化,背景会有一些改变,系统具有”背景维护“能力,即可以将一些后来融入背景的图象,如云等自动加为背景。
2、时间差分方法
时间差分方法就是高级的VMD,又称相邻帧差法,就是利用视频图象特征,从连续得到的视频流中提取所需要的动态目标信息。时间差分方实质就是利用相邻帧图象相减来提取前景目标移动的信息。此方法不能完全提取所有相关特征象素点,在运动实体内部可能产生空洞,智能检测出目标的边缘。
宝宝囡囡
帧间差分法的优点是:算法实现简单,程序设计复杂度低;对光线等场景变化不太敏感,能够适应各种动态环境,稳定性较好。其缺点是:不能提取出对象的完整区域,只能提取出边界;同时依赖于选择的帧间时间间隔。对快速运动的物体,需要选择较小的时间间隔,如果选择不合适,当物体在前后两帧中没有重叠时,会被检测为两个分开的物体:而对慢速运动的物体,应该选择较大的时间差,如果时间选择不适当,当物体在前后两帧中几乎完全重叠时,则检测不到物体。 鉴于背景差分法和帧间差分法的优缺点,我们将这两种方法结合起来,使它们优势互补,从而克服相互的弱点,提高运动检测的效果。但是在实际的场景中,即便是室内环境,也存在光线等各种变化造成的干扰,或者人为造成的开灯等光线的强烈变化。所以在背景差分法的实现中,它的固定背景不能一成不变。如果不进行重新初始化,错误的检测结果将随时间不断累计,造成恶性循环,从而造成监控失效。因此,我们在提出检测算法的同时,要建立背景更新模型。保证背景图像能随着光线的变化而变化,确保检测的准确性。提出新算法的思想在视频图像序列中,利用已有的背景差分法和帧间差分法作为启示,将动态图像中连续两帧差图像和背景差图像直接进行与操作,再将结果进行二值化处理得到运动结果。这样就达到了加大目标信息的权重,同时抑制了静态背景的效果,得到的运动检测图像包含了更多目标的信息,不仅包含目标轮廓而且还有目标轮廓内的目标相关点,从而将运动目标从背景图像中分离出来,最终得到视频序列图像中运动存在与否的二值化图像。