• 回答数

    10

  • 浏览数

    118

冷夜寒池
首页 > 英语培训 > 哥德巴赫猜想英语

10个回答 默认排序
  • 默认排序
  • 按时间排序

whippedcream

已采纳

德国数学家哥德巴赫(C.Goldbach,1690-1764)

哥德巴赫猜想英语

279 评论(12)

冰河水心

Guessing1、猜想 造句:靠近村子正中的地方,她的脚步的回声掺杂了一些其它的声音;她看见路边不远处有一个麦仓,就猜想那些声音是讲道人的声音了。解释:猜测。2、猜测 造句:其他分析师暗示降低成本可能会发生在未来几周内,可能还包括目标更明确的裁员和自然减员,而不是象一些人猜测的那样大量的裁员。解释:推测;凭想象估计:这件事一点儿线索也没有,叫人很难~。3、猜谜 造句:所谓的“新年决心”这样看来似乎就是大家一起开的一个玩笑,一个每个人都心知肚明猜谜游戏,即便是下了“决心”,也用不着真的做到下一年不再宿醉。解释:<书>猜谜儿。4、猜疑 造句:虽然中国政府没有太多的说明,但是公平的说,这些所谓的“用心”主要是由于中国不断增长的政治和经济实力而引发的猜疑和恐惧。解释:无中生有地起疑心;对人对事不放心。5、猜忌 造句:最近,一些其他的研究报告也指出,后叶催产素引发了个体对自身群体成员的信任,及对非自身群体成员更大的怀疑与猜忌。解释:疑惑别人对自己不利而心怀不满。6、猜度 造句:白天我们将自己重重地包裹在铠甲之下,将真实的自己深深地隐匿起来,再亲密的人也会有顾忌,再相知的人也会有猜度。解释:猜测揣度。7、猜拳 造句:猜拳是一种由伟大的中国劳动人民创造的古老的回合制格斗类游戏,并添加了类似于D&D规则的游戏判定。解释:划(huá)拳。8、哥德巴赫猜想 造句:民间文学艺术是世界各民族的文化瑰宝,然而,对民间文学艺术的法律保护犹如法学领域的“哥德巴赫猜想”。解释:德国人哥德巴赫在1742年提出的两个猜想:(一)每个大于2的偶数都是两个素数之和。(二)每个大于5的奇数都是三个素数之和。我国数学家华罗庚、陈景润等对这问题作过重要贡献。9、两小无猜 造句:人们叹服《两小无猜》中“敢不敢”的游戏,以及用混泥土凝固的爱情;典故:男女小时候在一起玩耍,没有猜疑。

174 评论(15)

滋味游龙

哥德巴赫猜想(Goldbach Conjecture) 世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 陈景润证明哥德巴赫猜想 陈景润在福州英华中学读书时,有幸聆听了清华大学调来的一名很有学问的数学教师沈元讲课。他给同学们讲了一道世界数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个大于2的偶数均可表示两个素数之和’,简称1+1。他一生也没证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,从而使它成为世界数学界一大悬案”。老师讲到这里还打了一个有趣的比喻,数学是自然科学皇后,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取数学皇冠上的明珠的艰辛历程......1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些外语对一个数学家来说已是一个惊人突破,但对陈景润来说只是万里长征迈出的第一步。为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平方米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,可是,这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。二、作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。……”对于陈景润的贡献,中国的数学家们有过这样一句表述:陈景润是在挑战解析数论领域250年来全世界智力极限的总和。中国改革开放总设计师邓小平曾经这样意味深长地告诉人们:“像陈景润这样的科学家,中国有一千个就了不得”。三、陈景润小故事陈景润出生在贫苦的家庭,母亲生下他来就没有奶汁,靠向邻居借熬米汤活过来。快上学的年龄,因为当邮局小职员的父亲的工资太少,供大哥上学,母亲还要背着不满两岁的小妹妹下地干活挣钱。这样,平日照看3岁小弟弟的担子就落在小景润的肩上。白天,他带领小弟弟坐在小板凳上,数手指头玩;晚上,哥哥放了学,就求哥哥给他讲算数。稍大一点,挤出帮母亲下地干活的空隙,忙着练习写字和演算。母亲见他学习心切,就把他送进了城关小学。别看他长得瘦小,可十分用功,成绩很好,因而引起有钱人家子弟的嫉妒,对他拳打脚踢。他打不过那些人,就淌着泪回家要求退学,妈妈抚摸着他的伤处说:“孩子,只怨我们没本事,家里穷才受人欺负。你要好好学,争口气,长大有出息,那时他们就不敢欺负咱们了!”小景润擦干眼泪,又去做功课了。此后,他再也没流过泪,把身心所受的痛苦,化为学习的动力,成绩一直拔尖,终于以全校第一名的成绩考入了三元县立初级中学。 在初中,他受到两位老师的特殊关注:一位是年近花甲的语文老师,原是位教授,他目睹日本人横行霸道,国民党却节节退让,感到痛心疾首,只可惜自己年老了,就把希望寄托于下一代身上。他看到陈景润勤奋刻苦,年少有为,就经常把他叫到身边,讲述中国5000年文明史,激励他好好读书,肩负起拯救祖国的重任。老师常常说得满眼催泪,陈景润也含泪表示,长大以后,一定报效祖国!另一位是不满30岁的数学教师,毕业于清华大学数学系,知识非常丰富。陈景润最感兴趣的是数学课,一本课本,只用两个星期就学完了。老师觉得这个学生不一般,就分外下力气,多给他讲,并进一步激发他的爱国热情,说:“一个国家,一个民族,要想强大,自然科学不发达是万万不行的,而数学又是自然科学的基础。”从此,陈景润就更加热爱数学了。一直到初中毕业,都保持了数学成绩全优的记录。祖国光复后,陈景润考入福州英华书院念高中。在这里,他有幸遇见使他终生难忘的沈元老师。沈老师曾任清华大学航空系主任,当时是陈景润的班主任兼教数学、英语。沈老师学问渊博,循循善诱,同学们都喜欢听他讲课。有一次,沈老师出了一道有趣的古典数学题:“韩信点兵”。大家都闷头算起来,陈景润很快小声回答:“53人”。全班为他算得速度之快惊呆了,沈老师望着这个平素不爱说话、衣衫褴褛的学生问他是怎么得出来的?陈景润的脸羞红了,说不出话,最后是用笔在黑板上写出了方法。沈老师高兴地说:“陈景润算得很好,只是不敢讲,我帮他讲吧!”沈老师讲完,又介绍了中国古代对数学贡献,说祖冲之对圆周率的研究成果早于西欧1000年,南宋秦九韶对“联合一次方程式”的解法,也比瑞士数学家欧拉的解法早500多年。沈老师接着鼓励说:“我们不能停步,希望你们将来能创造出更大的奇迹,比如有个‘哥德巴赫猜想’,是数论中至今未解的难题,人们把它比做皇冠上的明珠,你们要把它摘下来!”课后,沈老师问陈景润有什么想法,陈景润说:“我能行吗?”沈老师说:“你既然能自己解出‘韩信点兵’,将来就能摘取那颗明珠:天下无难事,只怕有心人啊!”那一夜,陈景润失眠了,他立誓:长大无论成败如何,都要不惜一切地去努力!

177 评论(13)

朝天辣椒smile

当年徐迟的一篇报告文学,中国人知道了陈景润和歌德巴赫猜想。 那么,什么是歌德巴赫猜想呢? 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。 到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。 1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。 1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。 1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。 布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。 然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。 由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明歌德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对歌德巴赫猜想证明没有一点作用。 歌德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾永远存在。歌德巴赫猜想是永远无法从理论上,逻辑上证明的数学结论。 “用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》) 关于歌德巴赫猜想的难度我就不想再说什么了,我要说一下为什么现代数学界对歌德巴赫猜想的兴趣不大,以及为什么中国有很多所谓的民间数学家对歌德巴赫猜想研究兴趣很大。 事实上,在1900年,伟大的数学家希尔伯特在世界数学家大会上作了一篇报告,提出了23个挑战性的问题。歌德巴赫猜想是第八个问题的一个子问题,这个问题还包含了黎曼猜想和孪生素数猜想。现代数学界中普遍认为最有价值的是广义黎曼猜想,若黎曼猜想成立,很多问题就都有了答案,而歌德巴赫猜想和孪生素数猜想相对来说比较孤立,若单纯的解决了这两个问题,对其他问题的解决意义不是很大。所以数学家倾向于在解决其它的更有价值的问题的同时,发现一些新的理论或新的工具,“顺便”解决歌德巴赫猜想。 例如:一个很有意义的问题是:素数的公式。若这个问题解决,关于素数的问题应该说就不是什么问题了。 为什么民间数学家们如此醉心于哥猜,而不关心黎曼猜想之类的更有意义的问题呢? 一个重要的原因就是,黎曼猜想对于没有学过数学的人来说,想读明白是什么意思都很困难。而歌德巴赫猜想对于小学生来说都能读懂。 数学界普遍认为,这两个问题的难度不相上下。 民间数学家解决歌德巴赫猜想大多是在用初等数学来解决问题,一般认为,初等数学无法解决歌德巴赫猜想。退一步讲,即使那天有一个牛人,在初等数学框架下解决了歌德巴赫猜想,有什么意义呢?这样解决,恐怕和做了一道数学课的习题的意义差不多了。 当年柏努力兄弟向数学界提出挑战,提出了最速降线的问题。牛顿用非凡的微积分技巧解出了最速降线方程,约翰·柏努力用光学的办法巧妙的也解出最速降线方程,雅克布·柏努力用比较麻烦的办法解决了这个问题。虽然雅克布的方法最复杂,但是在他的方法上发展出了解决这类问题的普遍办法——变分法。现在来看,雅克布的方法是最有意义和价值的。 同样,当年希尔伯特曾经宣称自己解决了费尔马大定理,但却不公布自己的方法。别人问他为什么,他回答说:“这是一只下金蛋的鸡,我为什么要杀掉它?”的确,在解决费尔马大定理的历程中,很多有用的数学工具得到了进一步发展,如椭圆曲线、模形式等。 所以,现代数学界在努力的研究新的工具,新的方法,期待着歌德巴赫猜想这个“下金蛋的鸡”能够催生出更多的理论和工具。 附:黎曼猜想: 黎曼ζ函数的非平凡零点的实部都为1/2。 关于黎曼猜想更详细的请查阅 维基百科

313 评论(11)

jhaiyun888

Goldbach Conjecture

184 评论(13)

蛋爹是石头

Goldbach's conjecture

101 评论(12)

魔戒之love

gedebahe

226 评论(12)

烧仙草AO

Goethe Bach conjecture

261 评论(8)

小马摩羯

哥德巴赫猜想(Goldbach Conjecture) 世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。1956年,中国的王元证明了 “3 + 4 ”。1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。1966年,中国的陈景润证明了 “1 + 2 ”。最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。

128 评论(10)

轻松小绿植

我就知道有个歌德巴赫猜想

199 评论(9)

相关问答