• 回答数

    5

  • 浏览数

    97

习习谷风
首页 > 英语培训 > 化工机械英语翻译

5个回答 默认排序
  • 默认排序
  • 按时间排序

司令来拉

已采纳

281字,25块钱。支持淘宝。

化工机械英语翻译

176 评论(8)

小葛先森

fjgjdjbjfbgfbghjjfjgnj54k6jh6hjkjk6h465gkh64k6h4kkfydt74r5jhe8757y5&*Ty5&U6r47867t78674^%$W&^*&W%^&@$joi798664 xty hj sdytf urhtyrb jkthy

91 评论(11)

天天开心好好好

机械工程Mechanical Engineering 摘要: 机械工程是为国民经济建设和社会发展提供各类机械装备和生产制造技术以创造物质财富和提高社会文明水准的工程领域。其工程硕士学位授权单位培养从事机械设备设计、生产制造、检测与控制、使用及维修的高级工程技术人才。研修的主要课程有:政治理论课、外语课、高等工程数学、高等工程力学、现代设计理论与方法、现代制造技术及自动化、现代控制论基础、现代试验技术、电子与信息技术基础、现代材料学、现代管理学基础,以及适当选择与行业相关的专业机械的研究、设计和制造等课程。 Mechanical Engineering Abstract: Mechanical Engineering concerns various types of machinery and manufacturing equipment used to create property and improve the standard of living. The department which grants master‘s degrees prepares students for careers as high-level engineers, specializing in mechanical design, production manufacturing, measurement and control, operation and maintenance. The program includes political theory, foreign language, advanced mathematics, advanced mechanics, design theory and methods, manufacturing techniques and automation, control fundamentals, experimental techniques, electrical and information fundamentals, material properties, management tools and other courses related to research, design and manufacturing of machinery in various specialties. 以上是文章开头,觉得有用再下,呵呵。 csl01514218 2007-05-24 08:06 机械工程Mechanical Engineering 摘要: 机械工程是为国民经济建设和社会发展提供各类机械装备和生产制造技术以创造物质财富和提高社会文明水准的工程领域。其工程硕士学位授权单位培养从事机械设备设计、生产制造、检测与控制、使用及维修的高级工程技术人才。研修的主要课程有:政治理论课、外语课、高等工程数学、高等工程力学、现代设计理论与方法、现代制造技术及自动化、现代控制论基础、现代试验技术、电子与信息技术基础、现代材料学、现代管理学基础,以及适当选择与行业相关的专业机械的研究、设计和制造等课程。 一、概述 机械工程是为国民经济建设和社会发展提供各类机械装备和生产制造技术以创造物质财富和提高社会文明水准的重要工程领域,是与人类社会活动关系十分密切、应用非常广泛的工程领域。它是一个传统的工程领域,自人类有史以来,就为生产活动所关注,第一次工业革命、第二次工业革命乃至当前的信息革命,无不直接或间接地同机械工程的发展有密切关系;它也是一个发展迅速的工程领域,随着电子技术、自动化技术、计算机及软件技术、材料科学的发展和渗透,充实和丰富了本领域的基础,拓宽和发展了本领域的研究范畴,并促进机械产品和生产过程向精密化、自动化、智能化、连续化、高效化、集成化方向发展。 本领域涉及机械设计、制造、试验、使用、维修等基础理论、技术和方法。并与材料工程、动力工程、电气工程、电子与信息工程、控制工程、计算机技术、工业设计工程等工程领域及力学学科密切相关。 二、培养目标 培养从事机械设备设计、生产制造、检测及控制、使用及维修的高级工程技术人才。 机械工程领域工程硕士要求掌握现代机械设计基础理论和方法、现代制造技术(包括工艺过程、制造加工设备及系统)、现代控制理论和方法、机电液一体化技术、试验技术、机械性能分析技术、使用维修理论及技术。具有从事新产品开发设计能力、生产工艺设计及实施能力、生产设备管理及使用维修能力。 三、领域范围 由于工程硕士直接为工矿企业和交通运输部门培养高层次工程技术人才,行业特征应该比较突出。行业的覆盖面归纳起来可分为:机械制造设备及生产系统; 工程施工机械及生产系统,材料、化工等专用生产设备及生产系统,起重、运输车辆及物流系统,农业生产机械等。 根据工程技术人员工作性质,领域范围可分为:机械设备的设计、开发,机械设备的制造及管理,机械设备的质量控制、性能检测、试验和特性分析,生产设备管理、使用、保养和维修。 四、课程设置 基础课:科学社会主义理论、自然辩证法、外语、高等工程数学、高等工程力学、计算机技术应用及程序设计等。 技术基础课:现代设计理论与方法、现代制造技术及其自动化、现代控制论基础、现代试验技术、电子与信息技术基础、现代材料学、现代管理学基础等。 专业课:根据服务的行业确定,如化工机械、冶金机械、农业机械、工程机械、车辆工程及与各工程领域密切相关的课程等。由培养单位与合作企业根据实际需要确定。 上述课程可定为学位课程和非学位课程。此外,还可以根据实际情况进行不同的组合和设置。课程学习总学分不少于28个学分。 五、学位论文 结合企业的实际课题进行研究工作,根据研究结果撰写论文。对于新产品设计与开发的技术成果,论文应该具有设计方案的比较、评估,设计计算书,完整的图纸;对于重大技术改造和革新的成果,应该具有对原设备与技术的评价,改造和革新方案的评述及结果的技术和经济效果分析;对于产品质量控制和试验的成果,必须有试验方案、完整的实验数据、数据处理分析方法、结果分析;对于生产设备管理成果,必须给出新的管理理论体系,对企业产量和质量作效果分析,并给出创新管理信息系统等。 这好象是某个学校关于机械工程学科的双语介绍,楼主好象有些不地道呢应该不是什么期刊论文吧 BACKGROUND OF THE INVENTION This invention relates generally to an apparatus for measuring grain loss in harvesting machines, and more particularly, to an apparatus that may be used for measuring grain losses in harvesting machines, lost grain being that grain which is lost by way of either being entrained in the straw which is discharged from the combine separating mechanism to the ground or by way of being discharged together with chaff and other impurities from the combine cleaning apparatus. Throughout this specification the reference to "grain" is intended to refer to that part of the crop which is threshed and separated from the discardable part of the crop material which is referred to as "straw". In the following description terms such as "forward", "rearward", "left", "right" etc. are used which are words of convenience and which are not to be construed as limiting terms. Grain loss monitors for harvesting machines are known and these attempt to monitor the amount of grain which is lost by way of being entrained with the straw, chaff and other debris and not separated therefrom. To date, no grain loss monitor has been provided which is able to provide an indication, in absolute terms, of the magnitude of the actual grain loss that is occurring during the harvesting operation. Known monitors have only been able to provide some indication which varies more-or-less proportionally with the variations in the magnitude of the actual grain losses without however having been able to establish the correlation factor between this indication and the actual losses. These known grain loss monitors rely on impact detectors to "count" a fraction of the grain which is being discharged with the straw, chaff and other debris at the back of the machine without knowing however the exact relative proportion between this fraction and the total actual losses. A number of problems are encountered over and above the basic problem of not being able to provide an exact measurement of the amount of grain being lost. One of the ancillary problems is that known detectors are unable to distinguish with any assurance between impacts occasioned by grain and those occasioned by pieces of straw having a nodule at one end thereof and which can be "seen" by a detector as a grain kernal. This problem is particularly critical in wet grain conditions. Another problem with known grain loss monitors is the relatively complex procedure which has to be adopted to set up the monitor in the first place. Apart from having to operate a plurality of controls according to the type of crop and the condition of the crop being harvested (the latter being likely to change anyway as one proceeds with the harvesting operation), the operator has to calibrate the monitor to some extent by way setting the relevant controls and then physically checking the straw, chaff and other debris which is being discharged by the machine and using his practiced eye to decide whether or not the extent of grain loss is acceptable. If it is not, then the controls are reset and a further check is made. When the operator decides that the grain loss is acceptable, he then attempts to operate the machine so as to keep the grain loss monitor "reading" at the same value. If the operator does not use his practiced eye to effect this calibration of a known grain loss monitor, then grain loss can be relatively high even when the monitor might indicate otherwise. This is because, if a crop being harvested is of a type or is in a condition such that it is difficult to separate grain from the straw in which it is entrained, the detectors will detect very little grain because, if the latter is not properly separated from the straw, then it will not impact the detector in the form necessary to be "counted." Accordingly, in this harvesting situation, the grain loss monitor will indicate that the grain loss is minimal and probably zero when quite the reverse situation may pertain. It will also be appreciated that, in a crop or crop condition which results in an easier separation of grain from the straw, the grain loss monitor will indicate that there is grain loss which, while being true, is at a level which is usually significantly less than for the crop or crop condition having the characteristic of being difficult to separate the grain from the straw. This thus is the reason why the practiced eye of the operator is required for calibration purposes. It further also will be appreciated that, even with the calibration as described above, the grain loss monitor still does not provide a "reading" in absolute figures of the magnitude of the actual losses. Instead, this monitor "reading" only indicates whether or not the actual losses are at a generally acceptable level. In addition thereto, variations in the grain loss monitor "reading" further also may be interpreted to mean that the actual grain losses vary more-or-less accordingly, i.e. increase or decrease together with an increased, respectively decreased monitor "reading" even though there appears not necessarily to exist a linear correlation therebetween. Accordingly, it would be desirable to overcome not only this problem of calibration experienced with known grain loss monitors but, more importantly, to provide an apparatus which will measure actual loss of grain. SUMMARY OF THE INVENTION According to the present invention an apparatus is provided which includes detector means associated with the threshing and separating mechanism and/or the cleaning apparatus of a harvesting machine for measuring grain loss in said machine, and having at least two detector means associated with a least either said threshing and separating mechanism or said cleaning apparatus. The detector means is mounted at spaced apart locations along the length of the path of the crop material through the mechanism and/or the apparatus and the detector means is operable to detect grain separation rates in the mechanism and/or the apparatus at the locations within the machine and to produce electrical output signals representative thereof. A processor means to which the output signals are applied is operable to derive therefrom a substantially absolute indication of grain loss at a given instant. Preferably three grain separation detector means are associated with at least either the threshing and separating mechanism or the cleaning apparatus. A first detector means is provided either generally at or adjacent to the receiving end of the separating mechanism or generally at the midpoint (as seen in fore-and-aft direction) of the cleaning apparatus. A second detector means is provided generally at or adjacent to the discharge end of either said separating mechanism or said cleaning apparatus, while the third detector means is provided generally midway between said first and second detector means along the length of either said separating mechanism or said cleaning apparatus. These grain separation detector means preferably are of the impact type. The processor means have stored therein predetermined data preferably in the form of look-up tables, and are operable to compare therewith data derived from the output signals of the grain separation detector means to derive therefrom a substantially absolute indication of grain loss. Furthermore, the processor means may be programmed to accept the manual input of operating condition parameters and may be operable to compare these parameters with the predetermined data stored in the processor means and with data derived from the output signals of the grain separation detector means to derive therefrom the substantially absolute indication of grain loss. These operating condition parameters may include both crop parameters and/or machine parameters, which are representative of at least one of the following characteristics: type of crop (i.e. wheat, barley, corn . . . ); condition of crop (ripe, unripe . . . ); crop moisture content; specific weight of 1000 kernals of grain; amount of material other than grain (MOG); and ground speed factors (e.g. header width, wheel diameter). However, one or more of these operating condition parameters, eventually together with still other operating condition parameters, alternatively may be detected by further detector means. These further detector means could be operable to produce a further signal or signals representative of the respective operating condition parameters and to apply the signals to the processor means. These processor means, in this case, would be programmed to apply the further signals against the predetermined data stored within the processor means and the data derived from the output signals of the grain separation detector means to derive therefrom the substantially absolute indication of grain loss. These further detector means may sense one or more of the following conditions: crop moisture content; grain flow; material other than grain (MOG); or ground speed. In a preferred embodiment, the processor means are programmed with at least one algorithm against which the data derived from the grain separation detector means and the operating condition parameter or parameters inputted by the operator and/or detected with the further detector means, are applied to derive therefrom said substantially absolute grain loss indication. In case more than one algorithm is stored, the processor means is programmed to select the appropriate algorithm for any given circumstance on the basis of the operating condition parameter or parameters. The algorithms may be a logistic selection of the ratio or ratios of pairs of grain separation detector output signals and one or more operating condition parameters. The processor may calculate grain loss in terms of weight per unit of time although other approaches, such as calculations in terms of percentages or weight per unit of surface, are preferred. This information is indicated on a display unit. The grain flow and material other than grain (MOG) detectors may be effected by the flow metering device disclosed in European patent application no. 85.201.187.3. In addition. The grain separation detector means preferably are of the type such as disclosed in the U.S. patent applications filed concurrently herewith and entitled "Impact Detectors" and "Grain Loss Monitors for Harvesting Machines." Preferably, this type of impact detector is employed because of a high saturation point so that it can be located at a point in the harvesting machine where the incidence of grain is very much higher than that occurring at the end of the straw walkers, for example. Thus, such detectors may be located beneath the threshing and separating mechanism of the harvesting machine so that data can be derived in respect of grain actually separated from the rest of the crop material in said mechanism and as is part of the present invention. Preferably, means are provided for converting the grain separation detector output signals and the operating condition detector signals into pulsed signals. Counter means responsive to the convertor means are operable to count the pulses of the output signals. Multiplexer means are provided to look at the counts in the counters in rotation, for example every second, and pass the data obtained therefrom to the processor means so that the latter can derive an indication of grain loss therefrom. Each counter is preferably provided with a buffer in order that, when the counter is reset, the count therein can be dumped in the buffer to allow the counter to continue counting. According to a second aspect of the present invention there is provided a method of measuring grain loss in a harvesting machine which includes the steps of: detecting grain separation at least two locations within the machine; producing output signals representative thereof; applying said output signals to processor means; and deriving therefrom a substantially absolute indication of grain loss at a given instant. This method of measuring grain loss may include the following additional steps: detecting at least one operating condition parameter; producing a further output signal or signals representative thereof; applying said further output signal or signals to the processor means; comparing said output signals and further output signal or signals in the processor means; and deriving therefrom said substantially absolute indication of grain loss.

356 评论(8)

脉脉含情阿

1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识; The master chemical engineering, chemical technology, applied chemistry subjects such as basic theory, basic knowledge2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法; Master chemical plant technology and equipment design method, grasps the chemical process simulation optimization method; 3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力; Has to new products, new technology, new technology and new equipment research, development and design of the preliminary ability; 4.熟悉国家对化工生产、设计、研究、开发、环境保护等方面的方针政策和法规; Familiar with countries to chemical production, design, research, development and environmental protection policy and rules and regulations. 5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态; Understand chemical engineering theory front, to understand new technology, new technology and new equipment development dynamic; 6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力; Master document retrieval, information query basic method, has the certain scientific research and practical work ability; 7. 具有创新意识和独立获取新知识的能力;Has innovation consciousness and independent acquire new knowledge ability; 8.熟练掌握气相色谱仪、液相色谱仪、红外光谱仪、紫外光谱仪等仪器的使用;Familiar with gas chromatography, liquid chromatography, infrared spectrometer, ultraviolet spectrometer and the use of the instrument; 9.能熟练使用office办公软件,具有使用vfp、turbo pascal等编程软件编译简单程序的能力;Able to skillfully use office software, has the use of VFP, turbo PASCAL programming software such as compiling simple program ability; 10.能熟练使用autoCAD软件进行化工机械制图。Familiar with autoCAD software chemical mechanical drawing.

109 评论(8)

nanami小明

Q我,专业机械翻译。

232 评论(11)

相关问答