夏日风清凉
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
linximeng520
1、一个曲线上任意一点的导数就是该点的切线的斜率。导数 = differentiation, derivative 斜率 = gradient, slope, tangent 2、导数公式的证明、推导:A、在任意一点,如x。,过x。画一条割线(secant); B、写出这条割线的斜率的函数表达式; C、让割线与切线相交的另一点无限地靠近x。; D、这条割线也就无限接近于x。点处的切线(tangent line); E、割线的函数表达式最后就成了切线的斜率。
愛戀寶寶
1,Derivative:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。对于可导的函数f(x),x↦f'(x)也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。2,derivative[英][dɪˈrɪvətɪv][美][dɪˈrɪvətɪv]n.[数]导数,微商; [化] 衍生物,派生物; [语]派生词; adj.衍生的; 导出的; 拷贝的; 复数:derivatives双语例句You people are derivative.你们这些人是没有创意的.
优质英语培训问答知识库