• 回答数

    6

  • 浏览数

    172

薄荷点点
首页 > 英语培训 > 抽样方案英文

6个回答 默认排序
  • 默认排序
  • 按时间排序

果果麦片

已采纳

sampling

抽样方案英文

93 评论(10)

奈奈fighting

抽样标准,每一件产品都是有区别的!注重的是各户要求! QC即英文QUALITY CONTROL的简称,中文意义是质量控制,其在ISO8402:1994的定义是“为达到质量要求所采取的作业技术和活动”。产品经过检验后再出货是质量管理最基本的要求。质量控制是为了通过监视质量形成过程,消除质量环上所有阶段引起不合格或不满意效果的因素。以达到质量要求,获取经济效益,而采用的各种质量作业技术和活动。在企业领域,质量控制活动主要是企业内部的生产现场管理,它与有否合同无关,是指为达到和保持质量而进行控制的技术措施和管理措施方面的活动。质量检验从属于质量控制,是质量控制的重要活动。 有些推行ISO9000的组织会设置这样一个部门或岗位,负责ISO9000标准所要求的有关质量控制的职能,担任这类工作的人员就叫做QC人员,相当于一般企业中的产品检验员,包括进货检验员(IQC)、制程检验员(IPQC)和最终检验员(FQC)。QC最重要的职责在于对制成品(主要包括Raw material,in-process goods,finish goods,In-process audit)的监控,侧重于通过Sample Inspection来Detect defect。每个企业对这种岗位的具体要求也会稍有偏差。1、QC简易七手法:甘特图、流程图、5W2H、愚巧法、雷达法、统计图、推移图 2、QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图 3、QC新七大手法:关连图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法 推行QC七大手法的情况,一定程度上表明了公司管理的先进程度。这些手法的应用之成败,将成为公司升级市场的一个重要方面:几乎所有的OEM客户,都会把统计技术应用情况作为审核的重要方面,例如TDI、MOTOROLA等。

282 评论(10)

李吉吉jjj

sampling plan

339 评论(12)

哼哼郭Eva

每个公司,或者厂里。都有抽样标准的!有的按0.5的标准。有的按0.65的抽样标准。按照所划分的抽样标准不一样,所抽样的数量也不一样!到时候进厂之后,会给你看的。

218 评论(9)

碗碗小公主

我们之所以对于抽样感兴趣,不是为了寻求各种各样奇异的考试题,而是在真实的环境中,我们需要通过抽样得到的统计数据来对总体的某些方面的特征做一个估计或者推理。例如,采用样本均值对总体的均值进行一个估计,采用样本方差对总体的方差进行一个估计,或采用样本中具有某个特征的元素的比例对总体中具有这个特征的元素的比例做一个估计。我们知道这种估计或推理不可能是完全准确的,如何评估这个估计的准确性正是抽样分布研究的内容之一。

上文这种点对点的估计方式称为点估计 Point estimation,被选定的样本统计特征称为点估计量 Point estimator,相应的样本统计值称为总体特征的点估计值 Point estimate。为了便于定量的统计研究,我们将总体的特征以数值形式表示并将其称为参数。

当我们从一个数量为 N 的包含有限个元素的总体中进行抽样的时候,最简单的抽样方法就是随机逐个抽取或一次性抽取其中的 n 个元素构成一个样本集,抽取时需要满足总体中任意包含 n 个元素的样本集都有相同的概率被抽到,这种抽样方法称为简单随机抽样。简单随机抽样中,如果被抽出的元素可以被放回,即每一个元素被抽到的概率都是 1/N,这种抽样方式称为有放回抽样 Sampling with replacement,反之对于抽出的样本不再放回的抽样方式称为无放回抽样 Sampling without replacement,这里我们默认采用的是无放回的方式。

很多情况下被研究的总体是一个非常大的数值,或者可能是一个持续增加的过程,那么此时可以认为这个总体包含无限多个元素。对于此类总体的随机抽样需要满足:

这两个看似简单的要求在实际应用中是极其容易被敷衍的,也是很多统计数据不可信的原因,需要针对实际应用加以甄别。例如:

从一个大的总体中随机抽取 n 个元素构成一个样本集时,如果采用一次性抽取的方式,则样本集的构成有 N! / [n!(N-n)!] 个,因此我们完全可以相信不同的样本集中获取的点估计量的点估计值是完全可以不同的,也即不同的抽样得到的点估计值与总体参数之间存在误差,这个误差被称为采样误差 sampling error。我们想要了解这些点估计量的值的分布情况的目的就是为了确保我们在使用这些点估计值进行总体估计的时候能够清楚的知道误差的范围到底有多大,该如何去调整抽样的大小或采取相应的校正以使得其可以更加准确的近似总体的参数。

实际上前面提到的这些抽样得到的统计量都可以被看作是随机变量,因此可以通过前述的频数统计、可视化、最大值、最小值、百分位值、期望和方差等描述统计学工具来研究其分布形态。这些来自于同一总体的包含同样数量元素的多次抽样得到的统计值的分布形态称为抽样分布。如果我们按照之前的方法,如频数统计并通过直方图可视化的统计这些统计值,会发现这些来自不同样本集的统计值在整体上近似呈正态分布。

这里需要注意的是,我们在研究这些抽样分布时并未穷尽总体中所有可能的样本集,而是所有可能的样本集的一个子集,也即样本集的样本集来进行研究,这一点充分体现了统计学的研究逻辑。

x̄ 的抽样分布是对通过抽样得到的所有可能的多个样本集的各自的 x̄ 的分布状态的研究,再一次地,由于 x̄ 是一个随机变量,因此可以同任意随机变量一样计算其期望、方差。在这里有:

其中 (N - n) 1/2 / (N - 1) 1/2 称为包含有限个元素的总体的校正系数 Finite population correction factor,但在大部分的应用中,由于总体的元素数量都远大于抽样样本中所包含的元素的数量,此时这个系数近似等于 1,因此在 n / N ≤ 0.05 的含有有限个元素的总体和含有无限个元素的总体中都可以采用 σ x̄ = σ / n 1/2 来计算抽样得到的样本集的均值的方差。

在后续学习及推理统计学中为了便于区分总体参数的标准差和对应的点估计量的标准差,我们将点估计量的标准差命名为标准误差 Standard error,当这个点估计量是 x̄ 时,σ x̄ 就是 x̄ 的标准误差。

上文中 x̄ 的直方图近似呈正态分布不是一个偶然:

由上图可以看出随着样本量的增加,均值的抽样分布逐渐逼近正态分布。在实际应用中,一般当抽样样本量大于 30 时就可以认为样本均值服从正态分布,当数据极度偏斜时,可以将样本量扩大到 50。x̄ 的抽样分布的重要意义在于其描述了来自不同样本集的 x̄ 围绕总体均值 μ 的分布情况,也提供了任意一个 x̄ 的取值与总体均值 μ 的差异情况。

在了解了均值的抽样分布的基础上,我们就可以知道任意一个抽样得到的均值有多大的概率可以在误差允许范围内近似总体的均值。因为抽样均值服从均值为总体均值 μ,标准误差为总体均方差 σ 除以样本集中包含的样本数量的平方根 n 1/2 的正态分布,因此我们想要了解抽样均值落在总体均值某个误差范围内的概率就可以借助标准正态分布进行计算。假设我们设定可以接受的围绕总体均值的误差范围设置为 (x lower ,x upper ),则有:z lower = (x lower - μ) n 1/2 / σ, z upper = (x upper - μ) n 1/2 / σ,对于任意一个抽样样本集得到的 x̄,其落在这个误差范围内的概率为 P(z upper ) - P(z lower ) 。

从这个计算也可以看出,抽样误差的大小受到样本集中包含的样本数量的影响,并且随着样本数量的增加,抽样的均值的标准误差将变小,也即抽样均值的分布的离散程度变小,这也意味着从更大的抽样中得到的均值有更大的概率落在总体均值的某个误差范围内。

p̄ 为抽样样本集中具有某个特征的元素所占的比例,即 p̄ = x / n ,x 表示抽样样本集中具有某个特征的元素的数量,n 表示样本集中包含的元素的数量,其抽样分布的研究过程与 x̄ 类似,比较大的区别是样本集中的样本是否具有某个特征是一个二项分布,并且有:

同样地,在 n / N ≤ 0.05 的含有有限个元素的总体和含有无限个元素的总体中都可以采用 σ p̄ = (p(1 - p)) 1/2 / n 1/2 来计算多个样本集中得到的具有某个特征的样本的比例的标准误差。

由于 p̄ 服从二项分布,而前面针对二项分布的讨论中提到,当 np ≥ 5 且 n(1 - p) ≥ 5 时,可以用正态分布来近似计算二项分布,即当抽样样本集包含的样本数量及具有某个特征的元素的比例满足上述条件时,多个抽样样本集中具有某个特征的元素的比例近似地服从均值为 p,方差为 σ p̄ 的正态分布。至此,如果想了解抽样得到的比例有多大的可能性落在总体比例的某个误差范围内,则转化为一个正态分布的计算。

从前面我们看到,在选择是否采用样本的某个统计值做为点估计量来近似总体的相关参数时,我们希望了解这个样本统计值对于总体的近似程度和分布情况。在这里我们针对三个方面对点估计量的属性进行研究:无偏性 unbiased,有效性 efficiency,一致性 consistency。

为了方便表述,我们将总体的参数用 y 表示,抽样得到的统计值用 ŷ 来表示。

如果抽样的到的统计值的均值/期望满足 E(ŷ) = y,那么就称 ŷ 是 y 的一个无偏估计量。

对于某些估计量来说,由于抽样得到的统计值的期望会大于或小于总体的参数,如果直接用他们做为总体的估计就会高估或低估总体的值,这时就需要对样本的统计值做一定的校正。例如在样本的标准误差计算时,我们在分母选择用 n - 1 代替 n 就是为了使得 E(s) = σ,即使得样本的标准误差成为总体标准差的一个无偏估计量。

如果同一个抽样样本集中可以得到两个无偏统计值来对总体的同一个参数进行估计,那么我们理所应当会选择二者中均方差更小的那个,我们称这个相对较小均方差的估计量相比另一个估计量具有更高的有效性。例如如果从服从正态分布的总体中抽取样本,那么通过计算可以发现样本均值的方差小于样本中值的方差,因此我们会选择样本均值作为总体均值的更加有效的估计量。

如果随着样本量的增加,样本统计值总是倾向于对总体的参数的估计更加准确,这就是估计量的一致性。例如 σ x̄ 和 σ p̄ 随着 n 的增加会减小就反映了 x̄ 和 p̄ 是两个一致性很好的估计量。

我写这个笔记是为了系统的复习概率论中的一些概念,阅读的是 Statistics for Business and Economics, 12th Edition 英文原版,这是一本非常经典的参考书,毫无保留的满分推荐。尽管书名暗示了是在商业和经济学中的统计学,但根本的统计学知识是不变量,并且和很多优秀的原版书一样,作者时刻注意用实例来讲解统计学概念,基本上每一个新的概念的定义都建立在日常生活的实例的基础上,在此基础上还保留了精美的排版和精心设计的插图,十分便于理解。

329 评论(13)

美丽依然张

送样应该是 delivering

334 评论(9)

相关问答