诗酒趁年少r
基因一词来自希腊语,意思为“生”。是指携带有遗传信息的DNA序列,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变;根据遗传信息的改变方式,基因突变又可分为同义突变、错义突变和无义突变。
jajahhauqba
答案:有氧呼吸第三阶段的酶。理由:【H】是在有氧呼吸的第一和第二阶段产生的,【H】的去向是在第三阶段中和氧结合生成水,现在细胞内【H】的含量增多了,说明有氧呼吸第三阶段出了“问题”。有氧呼吸第三阶段出了“问题”同时也会使ATP的产生量减少。具体的酶:NADH脱氢酶。 NADH脱氢酶催化【H】和氧结合生成水,并偶联ATP的生成。所以缺少NADH脱氢酶则细胞内【H】的含量增多而ATP的含量减少
爱照相的猫酱
脱氧核糖核酸(DNA,为英文Deoxyribonucleic acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己DNA的一部分复制传递到子代中,从而完成性状的传播DNA是第个人独有的,但是其中有一部分是父代给你的
wisteria1221
由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变,就叫做基因突变。 1个基因内部可以遗传的结构的改变 。又称为点突变,通常可引起一定的表型变化 。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。 基因突变通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。
我爱吃土豆儿
ATP synthase,既ATP合成酶ATP合成酶利用线粒体膜间的高H浓度导致的H回流到MATRIX的过程,催化ADP+Pi => ATP的反映发生.如果ATP合成酶无效了,那线粒体膜间会维持一个很高的酸度,也就是高H,但ATP并没有产生.楼上说的NADH DEHYDROGENASE根本不对, 这个酶作用的结果是把H从线粒体的MATRIX移到膜间去,NADH + H+ + CoQ + 4H+in → NAD+ + CoQH2 + 4H+out , 他坏了不会对H浓度造成影响,但确实会导致ATP中断产生,因为线粒体内膜的电势差消失了.
三石太保
基因突变中文名称:基因突变 英文名称:gene mutation 定义:由于核酸序列发生变化,包括缺失突变、定点突变、移框突变等,使之不再是原有基因的现象。 应用学科:生物化学与分子生物学(一级学科);基因表达与调控(二级学科) 基因突变是指基因组DNA分子发生的突然的、可遗传的变异现象。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。基因突变(gene mutation)是由于DNA分子中发生碱基对的增添、缺失或替换,而引起的基因结构的改变,就叫做基因突变。1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变型一词既指突变基因,也指具有这一突变基因的个体。 基因突变通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。不论是真核生物还是原核生物的突变,也不论是什么类型的突变,都具有随机性、低频性和可逆性等共同的特性。 普遍性基因突变在自然界各物种中普遍存在。 随机性T.H.摩尔根在饲养的许多红色复眼的果蝇中偶然发现了一只白色复眼的果蝇。这一事实说明基因突变的发生在时间上、在发生这一突变的个体上、在发生突变的基因上,都是随机的。以后在高等植物中所发现的无数突变都说明基因突变的随机性。在细菌中则情况远为复杂。在含有某一种药物的培养基中培养细菌时往往可以得到对于这一药物具有抗性的细菌,因此曾经认为细菌的抗药性的产生是药物引起的,是定向的适应而不是随机的突变。S.卢里亚和M.德尔布吕克在1943年首先用波动测验方法证明在大肠杆菌中的抗噬菌体细菌的出现和噬菌体的存在无关。J.莱德伯格等在1952年又用印影接种方法证实了这一论点。方法是把大量对于药物敏感的细菌涂在不含药物的培养基表面,把这上面生长起来的菌落用一块灭菌的丝绒作为接种工具印影接种到含有某种药物的培养基表面,使得两个培养皿上的菌落的位置都一一对应。根据后一培养基表面生长的个别菌落的位置,可以在前一培养皿上找到相对应的菌落。在许多情况下可以看到这些菌落具有抗药性。由于前一培养基是不含药的,因此这一实验结果非常直观地说明抗药性的出现不依赖于药物的存在,而是随机突变的结果,只不过是通过药物将它们检出而已。 稀有性在第一个突变基因发现时,不是发现若干白色复眼果绳而是只发现一只,说明突变是极为稀有的,也就是说野生型基因以极低的突变率发生突变(一些有代表性的基因突变率见表)。在有性生殖的生物中,突变率用每一配子发生突变的概率,也就是用一定数目配子中的突变型配子数表示。在无性生殖的细菌中,突变率用每一细胞世代中每一细菌发生突变的概率,也就是用一定数目的细菌在分裂一次过程中发生突变的次数表示。据估计,在高等生物中,大约10^5~10^8个生殖细胞中,才会有1个生殖细胞发生基因突变。虽然基因突变的频率很低,但是当一个种群内有许多个体时,就有可能产生各种各样的随机突变,足以提供丰富的可遗传的变异。 可逆性野生型基因经过突变成为突变型基因的过程称为正向突变。正向突变的稀有性说明野生型基因是一个比较稳定的结构。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。从表中同样可以看到回复突变是难得发生的,说明突变基因也是一个比较稳定的结构。不过,正向突变率总是高于回复突变率,这是因为一个野生型基因内部的许多位置上的结构改变都可以导致基因突变,但是一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。 少利多害性一般基因突变会产生不利的影响,被淘汰或是死亡,但有极少数会使物种增强适应性。 不定向性例如控制黑毛A基因可能突变为控制白毛的a+或控制绿毛的a-基因。 有益性一般基因突变是有害的,但是有极为少数的是有益突变。例如一只鸟的嘴巴很短,突然突变变种后,嘴巴会变长,这样会容易捕捉食物或水。 一般,基因突变后身体会发出抗体或其他修复体进行自行修复。可是有一些突变是不可回转性的。突变可能导致立即死亡,也可以导致惨重后果,如器官无法正常运作,DNA严重受损,身体免疫力低下等。如果是有益突变,可能会发生奇迹,如身体分泌中特殊变种细胞来保护器官,身体,或在一些没有受骨骼保护的部位长出骨骼。基因与DNA就像是每个人的身份证,可他又是一个人的先知,因为它决定独立性某一基因位点的一个等位基因发生突变,不影响另一个等位基因,即等位基因中的两个基因不会同时发生突变。 ①隐性突变:当代不表现,F2代表现。 ②显性突变:当代表现,与原性状并存,形成镶嵌现象或嵌合体。 重演性同一生物不同个体之间可以多次发生同样的突变。着身体的衰老、病变、死亡的时间。 详见