天晟哥哥
经线: 连接南北两极的并同纬线垂直相交线,也称子午线。经线指示南北方向;所有经线都呈半圆状且长度相等;两条正相对的经线形成一个经线圈;任何一个经线圈都能把地球平分为两个半球。 纬线: 在地球仪上,顺着东西方向,环绕地球仪一周的圆圈,叫做纬线。所有的纬线都相互平行,并与经线垂直,纬线指示东西方向。纬线圈的大小不等,赤道为最大的纬线圈,从赤道向两极纬线圈逐渐缩小,到南、北两极缩小为点。 经纬线的来历 公元前334年,亚历山大渡海南侵,继而东征,随军地理学家尼尔库斯沿途搜索资料,准备绘制一幅“世界地图”。他发现沿着亚历山大东征的路线,由西向东,无论季节变换与日照长短都很相仿。于是作出了一个重要贡献———第一次在地球上划出了一条纬线,这条线从直布罗陀海峡起,沿着托鲁斯和喜马拉雅山脉一直到太平洋。 后来,长期担任古埃及亚历山大图书馆馆长的埃拉托斯,测算出地球的圆周是46250千米,他画了一张有7条经线和6条纬线的世界地图。 公元120年,克罗狄斯·托勒密综合前人的研究成果,认为绘制地图应根据已知经纬度的定点做根据,提出地图上绘制经纬度线网的概念。为此,托勒密测量了地中海一带重要城市和观测点的经纬度,编写了8卷地理学著作。其中包括8000个地方的经纬度。为使地球上的经纬线能在平面上描绘出来,他设法把经纬绘成简单的扇形,从而绘制出一幅著名的“托勒密地图”。 15世纪初,航海家亨利开始把“托勒密地图”付诸实践。但是,经过反复考察,却发现这幅地图并不实用。亨利手下的一些船长遗憾地说:“尽管我们对有名的托勒密十分敬仰,但我们发现事实都与他说的相反。” 正确地测定经纬度,关键需要有“标准钟”。制造准确的钟表在海上计时,显然比依靠天体计时要方便、实用得多。英国约克郡有位钟表匠哈里森,他用42年的时间,连续制造了5台计时器,一台比一台精确。第五台只有怀表那么大,测定经度时误差只有0.54公里。与此同时,法国制钟匠皮埃尔·勒鲁瓦设计制造的一种海上计时器也投入使用。至此,海上测定经度的问题终于初步得到了解决。 含经纬网的地图上,经线用大写英文字母E表示,纬线用大写字母N表示,字母后面紧跟着地点所指的具体经纬值。
实言舌实言兑
关于宵风的诗:从不知,何所谓的寂寞只觉得心中的苍凉悲戚渗透出的表情麻木,还是苍白从不了解的感觉任由自己被世界放逐而后,永远的沉沦如果谁说的这个世界还有所眷恋那么,当心中的那一份希望被绝望所替代后还有什么可以去交换失去了意义的存在要如何再去坚持下去解释,为一个名词作解释那么,如何去解释寂寞这个词那么,如何去解释存在这个词回答,为一个问题作回答那么,怎么去回答痛楚却感觉不到那么,怎么去回答寂寞却说不出口如果说,那个选择,是一段旋律因此,所决定的抉择因为风铃作响樱花散落之时春天到了……然后,命运开始了轮转……一片天二个行人三岔路相遇四海相伴彼此五岳山川仁遨游六月夏日你如褒姒七夕情人相吻搭鹊桥八月登高秋将近情未凉九里枫叶漫天你如秋月红十月重阳旧事重演难时辰错冬至霜降雪花满天恰似泪纷飞腊月烟火摇落怎奈何此生不再聚转眼你化作灰烬,消失不见......
银眼的狮子王
初中数学其实不难 只要上课认真听讲 将书上的东西看透在做一些练习 就能很好的掌握了 当然你可以预习会更好的吸收 (我刚考完中考 蛮简单)初中代数是使学生在小学数学的基础上,把数的范围从非负有理数扩充到有理数、实数;通过用字母表示数,学习代数式、方程和不等式、函数等,学习一些常用的数据处理方法算表或计算器的使用方法;发展对于数量关系的认识和抽象概括的思维,提高运算能力。 初中代数的教学要求①是: 1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。 2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则,能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。 3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元二次方程的根的判别式。能够分析等量关系列出方程或方程组解应用题。 使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不等式组,并把它们的解集在数轴上表示出来。 4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图象,会用描点法画出反比例函数、二次函数的图象。 5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一些简单的实际问题。 6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问题等基本的思想方法。 7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概念、法则、性质进行简单的推理,发展逻辑思维能力。 8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾转化的观点。同时,利用有关的代数史料和社会主义建设成就,对学生进 行思想教育。 教学内容①和具体要求如下。 (一)有理数 l•有理数的概念 有理数。数轴。相反数。数的绝对值。有理数大小的比较。 具体要求: (1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类。 (2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。 (3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。 2。有理数的运算 有理数的加法与减法。代数和。加法运算律。有理数的乘法与除法。倒数。乘法运算律。有理数的乘方。有理数的混合运算。 科学记数法。近似数与有效数字。平方表与立方表。 具体要求: (1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。 (2)了解倒数概念,会求有理数的倒数。 (3)掌握大于10的有理数的科学记数法。 (4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人法求有理数的近似数;会查平方表与立方表。 (5)了解有理数的加法与减法、乘法与除法可以相互转化。 (二)整式的加减 代数式。代数式的值。整式。 单项式。多项式。合并同类项。 去括号与添括号。数与整式相乘。整式的加减法。 具体要求: (1)掌握用字母表示有理数,了解用字母表示数是数学的一 大进步。 (2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值。 (3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式接某个字母降幂排列或升幂排列。 (4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。 (5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。 (三)一元一次方程 等式。等式的基本性质。方程和方程的解。解方程。 一元一次方程及其解法。 一元一次方程的应用。 具体要求: (1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方程的解。 (2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会对方程的解进行检验。 (3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。 (4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。 (四)二元一次方程组 二元一次方程及其解集。方程组和它的解。解方程组。 用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。 一次方程组的应用。 具体要求: (1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。 (2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组的一个解。 (3)灵活运用代人法、加减法解二元一次方程组,并会解简单的三元一次方程组。 (4)能够列出二元、三元一次方程组解简单的应用题。 (5)通过解方程组,了解把“三元”转化为“二元”,把“二元”转化为“一元”的消元的思想方法,从而初步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法。 (五)一元一次不等式和一元一次不等式组 I•一元一次不等式 不等式。不等式的基本性质。不等式的解集。一元一次不等式及其解法。 具体要求: (l)了解不等式和一元一次不等式的概念,掌握不等式的基本性质,理解它们与等式基本性质的异同。 (2)了解不等式的解和解集概念,理解它们与方程的解的区别,会在数轴上表示不等式的解集。 (3)会用不等式的基本性质和移项法则解一元一次不等式。 2•一元一次不等式组 一元一次不等式组及其解法。 具体要求: (1)了解一元一次不等式组及其解集的概念,理解一元一次不等式组与一元一次不等式的区别和联系。 (2)掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集。 (六)整式的乘除 l•整式的乘法 同底数幂的乘法。单项式的乘法。幂的乘方。积的乘方。单项式与多项式相乘。多项式的乘法。乘法公式: (a十b)(a一b)=a2-b2 (a±b)2=a2±2ab+b2 (a±b)(a2±ab+ b2)=a3±b3 具体要求: (1)掌握正整数幂的运算性质(同底数幂的乘法,幂的乘方,积的乘方),会用它们熟练地进行运算。 (2)掌握单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会用它们进行运算。 (3)灵活运用五个乘法公式进行运算(直接用公式不超过三次)。 (4)通过从幂运算到多项式的乘法,再到乘法公式的教学,初步理解“特殊———一般——一特殊”的认识规律。 2•整式的除法 同底数幂的除法。单项式除以单项式。多项式除以单项式。 具体要求: (1)掌握同底数幂的除法运算性质,会用它熟练地进行运算。 (2)掌握单项式除以单项式、多项式除以单项式的法则,会用它们进行运算。 (3)会进行整式的加、减、乘、除、乘方的较简单的混合运算,灵活运用运算律与乘法公式使运算简便。 (七)因式分解 因式分解。提公因式法。运用(乘法)公式法。分组分解法。十字相乘法。多项式因式分解的一般步骤。 具体要求: (1)了解因式分解的意义及其与整式乘法的区别和联系,了 解因式分解的一般步骤。 (2)掌握提公因式法(字母的指数是数字)、运用公式法(直接用公式不超过两次)、分组分解法(分组后能直接提公因式或运用公式的多项式,无需拆项或添项)和十字相乘法(二次项系数与常数项的积为绝对值不大于60的整系数二次三项式)这四种分解因式的基本方法,会用这些方法进行团式分解。 (八)分式 1.分式 分式。分式的基本性质。约分。最简分式。 分式的乘除法。分式的乘方。 同分母的分式加减法。通分。异分母的分式加减法。 具体要求: (l)了解分式、有理式、最简分式、最简公分母的概念,掌握分式的基本性质,会熟练地进行约分和通分。 (2)掌握分式的加、减与乘、除、乘方的运算法则,会进行简单的分式运算。 2.零指数与负整数指数 零指数。负整数指数。整数指数幂的运算。 具体要求: (l)了解零指数和负整数指数幂的意义;了解正整数指数幂的运算性质可以推广到整数指数幂,掌握整数指数幂的运算。 (2)会用科学记数法表示数。 (九)可他为一元一次方程的公式方程 含有字母系数的一元一次方程。公式变形。 分式方程。增根。可化为一元一次方程的分式方程的解法与 应用。 具体要求: (1)掌握含有字母系数的一元一次方程的解法和简单的公式变形。 (2)了解分式方程的概念,掌握用两边同乘最简公分母的方法解可化为一元一次方程的分式方程(方程中的分式不超过三个);了解增根的概念,会检验一个数是不是分式方程的增根。 (3)能够列出可化为一元一次方程的分式方程解简单的应用题。 (十)数的开方 1.平方根与立方根 平方根。算术平方根。平方根表。 立方根。立方根表。 具体要求: (1)了解平方根、算术平方根、立方根的概念,以及用根号表示数的平方根、算术平方根和立方根。 (2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根和算术平方根,用立方运算求某些数的立方根。 (3)会查表求平方根和立方根(有条件的学校可使用计算器)。 2.实数 无理数。实数。 具体要求: ( 1)了解无理数与实数的概念,会把给出的实数按要求进行归类;了解实数的相反数、绝对值的意义,以及实数与数轴上的点—一对应。 (2)了解有理数的运算律在实数运算中同样适用;会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算。 (3)结合我国古代数学家对。的研究,激励学生科学探求的精神和爱国主义的精神。 (十一)二次根式 二次根式。积与商的方根的运算性质。 二次根式的性质。 最简二次根式。同类二次根式。二次根式的加减。二次根式的乘法。二次根式的除法。分母有理化。 具体要求: (1)了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。 (2)掌握积与商的方根的运算性质 会根据这两个性质熟练地化简二次根式(如无特别说明,根号内所有的字母都表示正数,并且不需要讨论). (3)掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算。 (4)会将分母中含有一个或两个二次根式的式于进行分母有理化。 *(5)掌握二次根式的性质 会利用它化简二次根式 (十二)一元二次方程 1.一元二次方程 一元二次方程。一元二次方程的解法:直接开平方法,配方法,公式法,因式分解法。 一元二次方程的根的判别式。 *①一元二次方程根与系数的关系。 二次三项式的因式分解(公式法)。 一元二次方程的应用。 具体要求: (1)了解一元二次方程的概念,会用直接开平方法解形如 (x-a)2=b(b≥0)的方程,用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程。灵活运用一元二次方程的四种解法求方程的根。 (2)理解一元二次方程的根的判别式,会根据根的判别式判断数字系数的一元二次方程的根的情况。 *(3)掌握一元二次方程根与系数的关系式,会用它们由已知一元二次方程的一个根求出另一个根与未知系数,会求一元二次方程两个根的倒数和与平方和。 (4)了解二次三项式的因式分解与解方程的关系,会利用一元二次方程的求根公式在实数范围内将二次三项式分解因式。 (5)能够列出一元二次方程解应用题。 (6)结合教学内容进一步培养学生的思维能力,对学生进行辩证唯物主义观点的教育。 2.可化为一元二次方程的方程 可化为一元二次方程的分式方程。 * 可化为一元一次、一元二次方程的无理方程。 具体要求: (1)掌握可化为一元二次方程的分式方程(方程中的分式不超过三个)的解法,会用去分母或换元法求分式方程的解,并会验根。 (2)能够列出可化为一元二次方程的分式方程解应用题。 *(3)了解无理方程的概念,掌握可化为一元一次、一元一二次方程的无理方程(方程中含有未知数的二次根式不超过两个)的解法,会用两边平方或换元法求无理方程的解,并会验根。 (4)通过可化为一元二次方程的分式方程、无理方程的教学,使学生进一步获得对事物可以转化的认识。 3.简单的二元二次方程组 二元二次方程。二元二次方程组。 由一个二元一次方程和一个二元二次方程组成的方程组的解法。 * 由一个二元二次方程和一个可以分解为两个二元一次方程 的方程组成的方程组的解法。 具体要求: (l)了解二元二次方程、二元二次方程组的概念,掌握由一个二元一次方程和一个二元二次方程组成的方程组的解法,会用代人法求方程组的解。 *(2)掌握由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法。 (3)通过解简单的二元二次方程组,使学生进一步理解“.消元”、“降次”的数学方法,获得对事物可以转化的进一步认识。 (十三)函数及其图象 1•函数 平面直角坐标系。常量。变量。函数及其表示法。 具体要求: (l)理解平面直角坐标系的有关概念,并会正确地画出直角坐标系;理解平面内点的坐标的意义,会根据坐标确定点和由点求得坐标。了解平面内的点与有序实数对之间—一对应。 (2)了解常量、变量、函数的意义,会举出函数的实例,以及分辨常量与变量、自变量与函数。 (3)理解自变量的取值范围和函数值的意义,对解析式为只含有一个自变量的简单的整式、分式、二次根式的函数,会确定它们的自变量的取值范围和求它们的函数值。 (4)了解函数的三种表示法,会用描点法画出函数的图象。 (5)通过函数的教学,使学生体会事物是互相联系和有规律地变化着的,并向学生渗透数形结合的思想方法。 2•正比例函数和反比例函数 正比例函数及其图象。反比例函数及其图象。 具体要求: (1)理解正比例函数、反比例函数的概念,能够根据问题中的条件确定正比例函数和反比例函数的解析式。 (2)理解正比例函数、反比例函数的性质,会画出它们的图象,以及根据图象指出函数值随自变量的增加或减小而变化的情况。 (3)理解待定系数法。会用待定系数法求正、反比例函数的解析式。 3.一次函数的图象和性质 一次函数。一次函数的图象和性质。 △①二元一次方程组的图象解法。 具体要求: (1)理解一次函数的概念,能够根据实际问题中的条件,确 定一次函数的解析式。 (2)理解一次函数的性质,会画出它的图象。 △(3)会用图象法求二元一次方程组的近似解。 (4)会用待定系数法求一次函数的解析式。 4•二次函数的图象 二次函数。抛物线的顶点、对称轴和开口方向。 西一元二次方程的图象解法。 具体要求: (l)理解二次函数和抛物线的有关概念,会用描点法画出二 次函数的图象,会用公式(。配方法)确定抛物线的顶点和对称 轴。 △(2)会用图象法求一元二次方程的近似解。 *(3)会用待定系数法由已知图象上三个点的坐标求二次函 数的解析式。 (十四)统计初步 总体和样本。众数。中位数。平均数。方差与标准差。方差的简化计算。频率分布。 实习作业。 具体要求: (1)了解总体、个体、样本、样本容量等概念,能够指出研究对象的总体、个体和样本。 (2)理解众数、中位数的意义,掌握它们的求法。 (3)理解平均数的意义,了解总体平均数和样本平均数的意义,掌握平均数的计算公式;理解加权平均数的概念,掌握它的计算公式;会用样本平均数估计总体平均数。 (4)了解样本方差、总体方差、样本标准差的意义,会计算(可使用计算器)样本方差和样本标准差,会根据同类问题的两组样本数据的方差或样本标准差比较这两组样本数据的波动情况。 (5)理解频数、频率的概念,了解频率分布的意义和作用,掌握整理数据的步骤和方法,会对数据进行合理的分组,列出样本频率分布表,画出频率分布直方图。 △(6)会用科学计算器求样本平均数与标准差。 (7)通过实习作业,使学生初步掌握搜集、整理和分析数据的方法,培养解决实际问题的能力。 (8)通过统计初步的教学,使学生了解用样本估计总体的数理统计的基本思想,并培养学生用数学的意识,踏实细致的作风和实事求是的科学态度。 初中几何是在小学数学中几何初步知识的基础上,使学生进 一步学习基本的平面几何图形知识,向他们直观地介绍一些空间 几何图形知识。初中几何将逻辑性与直观性相结合,通过各种图 形的概念、性质、作(画)图及运算等方面的教学,发展学生的 逻辑思维能力、空间观念和运算能力,并使他们初步获得研究几 何图形的基本方法。 几 何 初中几何的教学要求是: 1.使学生理解有关相交线、平行线、三角形、四边形、圆,以及全等三角形、相似三角形的概念和性质,掌握用这些概念和性质对简单图形进行论证和计算的方法。了解关于轴对称、中心对称的概念和性质。理解锐角三角函数的意义,会用锐角三角函数和勾股定理解直角三角形。 2.使学生会用直尺、圆规、刻度尺、三角尺、量角器等工具作和画几何图形。 3.使学生通过具体模型,了解空间的直线、平面的平行与垂直关系,并会用展开图和面积公式计算圆柱和圆锥的侧面积和全面积。 4•逐步培养学生观察、比较、分析、综合、抽象、概括的能力,逐步使学生掌握简单的推理方法,从而提高学生的逻辑思维能力。 5.通过辨认图形、画图和论证的教学,进一步培养学生的空间观念。 6.通过揭示几何知识来源于实践又应用于实践的关系,以及几何概念、性质之间的联系和图形的运动、变化,对学生进行辩证唯物主义的教育。利用有关的几何史料和社会主义建设成就,对学生进行思想教育。通过论证与画图的教学,逐步培养学生严谨的科学态度,并使他们获得美的感受。 教学内容和具体要求如下: (一)线段、角 1•几何图形 几何体。几何图形。点。直线。平面。 具体要求: (1)通过具体模型(如长方体)了解从物体外形抽象出来的几何体、平面、直线和点等。 (2)了解几何图形的有关概念。了解几何的研究对象。 (3)通过几何史料的介绍,对学生进行几何知识来源于实践的教育和爱国主义教育,使学生了解学习几何的必要性,从而激发他们学习几何的热情。 2.线段 两点确定一条直线。相交线。 线段。射线。线段大小的比较。线段的和与差。线段的中点。 具体要求: (1)掌握两点确定一条直线的性质。了解两条相交直线确定一个交点。 (2)了解直线、线段和射线等概念的区别。 (3)理解线段的和与差及线段的中点等概念,会比较线段的大小。 (4)理解两点间的距离的概念,会度量两点间的距离。 3.角 角。角的度量。角的平分线。 小于平角的角的分类。 具体要求: (1)理解角的概念。掌握角的平分线的概念,会比较角的大小。会用量角器画一个角等于已知角。 (2)掌握度、分、秒的换算。会计算角度的和、差、倍、分。 (3)理解周角、平角、直角、锐角、钝角的概念,并会进行有关的计算。 (4)掌握角的平分线的概念。会画角的平分线。 (5)掌握几何图形的符号表示法。会根据几何语句准确、整洁地画出相应的图形,会用几何语句描述简单的几何图形。 (二)相交、平行 l•相交线 对顶角。邻角、补角。 垂线。点到直线的距离。 同位角。内错角。同旁内角。 具体要求: (1)理解对顶角的概念。理解对顶角的性质和它的推证过程,会用它进行推理和计算。 (2)理解补角、邻补角的概念,理解同角或等角的补角相等的性质和它的推证过程,会用它进行推理和计算。 (3)掌握垂线、垂线段等概念;会用三角尺或量角器过一点画一条直线的垂线。了解斜线、斜线段等概念,了解垂线段最短的性质。 (4)掌握点到直线的距离的概念,并会度量点到直线的距离。 (5)会识别同位角、内错角和同旁内角。 2.平行线 平行线。 平行线的性质及判定。 具体要求: (1)了解平行线的概念及平行线的基本性质。会用平行的传递性进行推理。 (2)会用一直线截两平行直线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算;会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。 (3)会用三角尺和直尺过已知直线外一点画这条直线的平行线。 (4)理解学过的描述图形形状和位置关系的语句,并会用这些语句描述简单的图形和根据语句画图。 3.空间直线、平面的位置关系 直线与直线,直线与平面,平面与平面的位置关系。 具体要求: 通过长方体的棱、对角线和各面之间的位置关系,了解直线与直线的平行、相交、异面的关系,以及直线与平面、平面与平面的平行、垂直关系。 4.命题、定义、公理、定理 命题。定义。公理。定理。 定理的证明。 具体要求: (1)了解命题的概念,会区分命题的条件(题设)和结论(题断),会把命题改写成“如果…’••,那么”’…”的形式。 (2)了解定义、公理、定理的概念。 (3)了解证明的必要性和推理过程中要步步有据,了解综合法证明的格式。 (三)三角形 1.三角形 三角形。三角形的角平分线、中线、高。三角形三边间的不等关系。三角形的内角和。三角形的分类。 具体要求: (1)理解三角形,三角形的顶点、边、内角、外角、角平分线、中线和高等概念,会画出任意三角形的角平分线、中线和高。 (2)理解三角形的任意两边之和大于第三边的性质。会根据三条线段的长度判断它们能否构成三角形。 (3)掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角的性质。 (4)会按角的大小和边长的关系对三角形进行分类。 2.全等三角形 全等形。全等三角形及其性质。三角形全等的判定。 具体要求: (1)了解全等形、全等三角形的概念和性质,能够辨认全等 形中的对应元素。 (2)能够灵活运用“边、角、边”,“角、边、角”,“角、角、边”,“边、边、边”等来判定三角形全等;会证明“角、角、边”定理。了解三角形的稳定性。 (3)会用三角形全等的判定定理来证明简单的有关问题,并会进行有关的计算。
金德易BOSS
初中数学基础知识点总汇 一、数与代数A:数与式: 1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴 ②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。 ②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0. 两个负数比较大小,绝对值大的反而小。 有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。 ②异号相加,绝对值相等时和为0; 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。 ③一个数与0相加不变。 减法: 减去一个数,等于加上这个数的相反数。 乘法:①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘得0。 ③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。 ②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2:实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。 ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。 ③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。 ②正数的立方根是正数/0的立方根是0/负数的立方根是负数。 ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。 实数:①实数分有理数和无理数。 ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。 ③每一个实数都可以在数轴上的一个点来表示。 3:代数式 代数式:单独一个数或者一个字母也是代数式。 合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。 ②把同类项合并成一项就叫做合并同类项。 ③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4:整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算: 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式 方法:提公因式法/运用公式法/分组分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母的分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。 B:方程与不等式 1:方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。 解二元一次方程组的方法:代入消元法/加减消元法。 2:不等式与不等式组 不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。 不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。 一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。 3:函数 变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。 一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当k<0,b
坏坏的小幸福
初一上人教版 后面全 人教版 第一章 有理数 1.1 正数和负数 阅读与思考 用正负数表示加工允许误差 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒 数学活动 小结 复习题4 部分中英文词汇索引 封面 第一章 有理数 1.1 正数和负数 阅读与思考 用正负数表示加工允许误差 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒 数学活动 小结 复习题4 部分中英文词汇索引 七年级下册第五章 相交线与平行线 5.1 相交线 5.1.2 垂线 5.1.3 同位角、内错角、同旁内角 观察与猜想 5.2 平行线及其判定 5.2.1 平行线 5.3 平行线的性质 5.3.1 平行线的性质 5.3.2 命题、定理 5.4 平移 教学活动 小结 第六章 平面直角坐标系 6.1 平面直角坐标系 6.2 坐标方法的简单应用 阅读与思考 6.2 坐标方法的简单应用 教学活动 小结 第七章 三角形 7.1 与三角形有关的线段 7.1.2 三角形的高、中线与角平分线 7.1.3 三角形的稳定性 信息技术应用 7.2 与三角形有关的角 7.2.2 三角形的外角 阅读与思考 7.3 多变形及其内角和 阅读与思考 7.4 课题学习 镶嵌 教学活动 小结 第八章 二元一次方程组 8.1 二元一次方程组 8.2 消元——二元一次方程组的解法 8.3 实际问题与二元一次方程组 阅读与思考 *8.4 三元一次方程组解法举例 教学活动 小结 第九章 不等式与不等式组 9.1 不等式 阅读与思考 9.2 实际问题与一元一次不等式 实验与探究 9.3 一元一次不等式组 阅读与思考 教学活动 小结 第十章 数据的收集、整理与描述 10.1 统计调查 实验与探究 10.2 直方图 10.3 课题学习从数据谈节水 教学活动 小结 部分中英文词汇索引 八年级上册第十一章 全等三角形 11.1 全等三角形 11.2 三角形全等的判定 阅读与思考 全等与全等三角形 11.3 角的平分线的性质 教学活动 小结 复习题11 第十二章 轴对称 12.1 轴对称 12.2 作轴对称图形 12.3 等腰三角形 教学活动 小结 复习题12 第十三章 实数 13.1 平方根 13.2 立方根 13.3 实数 教学活动 小结 复习题13 第十四章 一次函数 14.1 变量与函数 14.2 一次函数 14.3 用函数观点看方程(组)与不等式 14.4 课题学习 选择方案 教学活动 小结 复习题14 第十五章 整式的乘除与因式分解 15.1 整式的乘法 15.2 乘法公式 15.3 整式的除法 教学活动 小结 复习题15 部分中英文词汇索引 义教课标 数学 八年级下册 第十六章 分式 16.1 分式 16.2 分式的运算 阅读与思考 容器中的水能倒完吗 16.3 分式方程 数学活动 小结 复习题16 第十七章 反比例函数 17.1 反比例函数 信息技术应用 探索反比例函数的性质 17.2 实际问题与反比例函数 阅读与思考 生活中的反比例关系 数学活动 小结 复习题17 第十八章 勾股定理 18.1 勾股定理 阅读与思考 勾股定理的证明 18.2 勾股定理的逆定理 数学活动 小结 复习题18 第十九章 四边形 19.1 平行四边形 阅读与思考 平行四边形法则 19.2 特殊的平行四边形 实验与探究 巧拼正方形 19.3 梯形 观察与猜想 平面直角坐标系中的特殊四边形 19.4 课题学习 重心 数学活动 小结 复习题19 第二十章 数据的分析 20.1 数据的代表 20.2 数据的波动 信息技术应用 用计算机求几种统计量 阅读与思考 数据波动的几种度量 20.3 课题学习 体质健康测试中的数据分析 数学活动 小结 复习题20 部分中英文词汇索引 义教课标 数学 九年级 上册 第二十一章 二次根式 21.1 二次根式 21.2 二次根式的乘除 21.3 二次根式的加减 阅读与思考 海伦-秦九韶公式 数学活动 小结 复习题21 第二十二章 一元二次方程 22.1 一元二次方程 22.2 降次——解一元二次方程 阅读与思考 黄金分割数 22.3 实际问题与一元二次方程 实验与探究 三角点阵中前n行的点数计算 数学活动 小结 复习题22 第二十三章 旋转 23.1 图形的旋转 23.2 中心对称 信息技术应用 探索旋转的性质 23.3 课题学习 图案设计 阅读与思考 旋转对称性 数学活动 小结 复习题23 第二十四章 圆 24.1 圆 24.2 点、直线、圆和圆的位置关系 24.3 正多边形和圆 阅读与思考 圆周率∏ 24.4 弧长和扇形面积 实验与探究 设计跑道 数学活动 小结 复习题24 第二十五章 概率初步 25.1 随机事件与概率 25.2 用列举法求概率 阅读与思考 概率与中奖 25.3 用频率估计概率 实验与探究 П的估计 25.4 课题学习 键盘上字母的排列规律 数学活动 小结 复习题25 部分中英文词汇索引 义务教育课程标准实验教科书 数学 九年级下册第二十六章 二次函数 26.1 二次函数及其图像 26.2 用函数观点看一元二次方程 信息技术应用 探索二次函数的性质 26.3 实际问题与二次函数 实验与探索 推测植物的生长与温度的关系 教学活动 小结 复习题26 第二十七章 相似 27.1 图形的相似 27.2 相似三角形 观察与猜想 奇妙的分形图形 27.3 位似 信息技术应用 探索位似的性质 教学活动 小结 复习题27 第二十八章 锐角三角函数 28.1 锐角三角函数 阅读与思考 一张古老的三角函数表 28.2 解直角三角形 教学活动 小结 复习题28 第二十九章 投影与视图 29.1 投影 29.2 三视图 阅读与思考 视图的产生与应用 29.3 课题学习 制作立体模型 数学活动 小结 复习题29 部分中英文词汇索引