切尔西在成都219
钚(英语:Plutonium ),原子序数为94,元素符号是Pu,是一种具放射性的超铀元素。半衰期为24万5千年。它属于锕系金属,外表呈银白色,接触空气后容易锈蚀、氧化,在表面生成无光泽的二氧化钚。钚有六种同位素和四种氧化态,易和碳、卤素、氮、硅起化学反应。钚暴露在潮湿的空气中时会产生氧化物和氢化物,其体积最大可膨胀70%,屑状的钚能自燃。它也是一种放射性毒物,会于骨髓中富集。因此,操作、处理钚元素具有一定的危险性。钚及其同位素因为其放射性而有一定危险性。钚产生的α射线并不会穿透人体的皮肤而进入人体,但钚可能被人体吸入或消化而进入人体从而对内脏造成不利影响。α射线会造成细胞的损伤、染色体的损伤,理论上可能导致癌症发病率的上升。但是这种影响并不会比其它能放出α射线的放射性物质危害更大。相比之下,钚的半衰期很长,使得单位时间里的辐射量相对要小,危害也就更小。在自然界广泛存在的氡的放射危害就要比钚大的多。钚容易在人体的肝脏和骨骼中聚集,但该过程非常缓慢。在20世纪四十年代,美国就有26名工作人员因核武器研究,受到了钚的污染。但是在他们身上并没有出现严重的健康影响,更没有人因此而死亡。同素异形体:在一般情况下,钚有六种同素异形体,并在高温、限定压力范围下有第七种(zeta, ζ)存在。 这些同素异形体的内能相近,但拥有截然不同的密度和晶体结构。因此钚对温度、压力以及化学性质的变化十分敏感,各同素异形体的体积并随相变而具有极大差异性。 密度因同素异形体而异,范围自16.00 g/cm^3到19.86 g/cm^3不等。 诸多同素异形体的存在,造成钚的状态易变,使钚元素的制造变得非常困难。例如,α型存在于室温的纯钚中。它和铸铁有许多相似加工后性质,但只要稍微提高温度,便会转成具有可塑性和可锻造性的β型。 造成钚复杂相图的背后因素迄今仍未被完整解惑。α型属于低对称性的单斜结构,因此促成它的易碎性、强度、压缩性及低传导性。 核分裂:钚是一种具放射性的锕系金属。它的5f电子是离域和定域之间的过渡界线;钚因此常被认为是最复杂的元素之一。 它的同位素钚-239是三个最重要的易裂变同位素之一(另外二者为铀-233和铀-235);钚-241也具有高度易裂变性。所谓的具“易裂变性”(fissile),是指同位素的原子核受到慢中子撞击后,能够产生核分裂,并另释放出足以支持核连锁反应、进一步促使原子核分裂的中子。环状金属钚重5.3公斤,直径约11厘米,足够制作一枚核弹。它的形状有助于维系临界安全。同位素:钚有二十种放射性同位素。在自然界中只找到两种钚同位素,一种是从氟碳铈镧矿中找到的微量钚-244,已知钚的同位素中寿命最长的是钚-244,半衰期是8.26×10^7年,它具有足够长的半衰期,可能是地球上原始存在的。另一种是从含铀矿物中找到的钚-239,是铀238吸收自然界里的中子而形成的。其他钚同位素都是通过人工核反应合成的。其中寿命最长的有钚-244(半衰期为8080万年)、钚-242(半衰期为373300年)及钚-239(半衰期为24110年)。其余的放射性同位素半衰期都低于7000年。钚也有八种亚稳态,但状态并不稳定、半衰期都不超过一秒。 钚的同位素的质量数范围从228到247不等。其中质量数低于钚-244(最稳定的同位素)的同位素,主要的衰变方式是自发裂变和α衰变,衰变产物通常生成铀(92个质子)和镎(93个质子)的同位素(忽略裂变过程产生之二子核的大范围)。质量数大于钚-244的同位素则以β衰变为主要衰变方式,衰变产物多为镅(95个质子)。钚-241是镎衰变系的母同位素,透过β粒子或电子放射衰变成镅-241。 同位素 丰度 半衰期 衰变模式 衰变能量MeV 衰变产物 Pu-238 人造 87.74年 自发分裂 204.66 - α衰变 5.5 U-234 Pu-239 微量 24100年 自发分裂 207.06 - α衰变 5.157 U-235 Pu-240 人造 6500年 自发分裂 205.66 - α衰变 5.256 U-236 Pu-241 人造 14年 自发分裂 210.83 - β衰变 0.02078 Am-241 Pu-242 人造 373000年 自发分裂 209.47 Kr-92,Ba-141,2个中子 α衰变 4.984 U-238 Pu-244 微量 8.08×10^7年 α衰变 4.666 U-240 钚-238和钚-239是最普遍的人造同位素。 钚-239是使用铀(U)和中子(n),并以镎(Np-239)作为中间体,产生β衰变(β)。透过反应1合成。 铀-235裂变中的中子被铀-238原子核俘获、形成铀-239;β衰变将一个中子转变成质子,形成镎-239(半衰期为2.36日),另一次β衰变则形成钚-239。 合金管计划的学者曾在1940年推导出此反应式。钚-238是以氘核(D,重氢的原子核)撞击铀-238。透过反应2合成。 在此反应过程中,一个氘核撞击铀-238,生成两个中子和镎-238;镎-238再发射负β粒子、产生自发衰变,形成钚-238。衰变热与裂变性质:钚同位素会发生放射性衰变,释放出衰变热。不同的同位素,单位质量所释出的热量也有所差异。衰变热的单位通常以“瓦特/公斤”或“毫瓦特/公克”计。所有同位素在衰变时都会释放出微弱的伽马射线。它最稳定的同位素是钚-244,半衰期约为八千万年,足够使钚以微量存在于自然环境中。 钚最重要的同位素是钚-239,半衰期为24100年,常被用制核子武器。钚-239和钚-241都易于裂变,即它们的原子核可以在慢速热中子撞击下产生核分裂,释放出能量、伽马射线(γ射线)以及中子辐射,从而形成核连锁反应,并应用在核武器与核反应炉上。钚-238的半衰期为88年,并放出阿尔法粒子(α粒子)。它是放射性同位素热电机的热量来源,常用于驱动太空船。钚-240自发裂变的比率很高,容易造成中子通量激增,因而影响了钚作为核武及反应器燃料的适用性。分离钚同位素的过程成本极高又耗时费力,因此钚的特定同位素时几乎都是以特殊反应合成。1940年,格伦·西奥多·西博格和埃德温·麦克米伦首度在柏克莱加州大学实验室,以氘撞击铀-238而合成钚元素。麦克米伦将这个新元素取名Pluto(意为冥王星),西博格便开玩笑提议定其元素符号为Pu(音类似英语中表嫌恶时的口语“pew”)。科学家随后在自然界中发现了微量的钚。二次大战时曼哈顿计划则首度将制造微量钚元素列为主要任务之一,曼哈顿计划后来成功研制出第一个原子弹。1945年7月的第一次核试验“三一原子弹”,以及第二次、投于长崎市的“胖子原子弹”,都使用了钚制作内核部分。关于钚元素的人体辐射实验研究并在未经受试者同意之下进行,二次大战期间及战后都有数次核试验相关意外,其中有的甚至造成伤亡。核能发电厂核废料的清除,以及冷战期间所打造的核武建设在核武裁减后的废用,都延伸出日后核武扩散以及环境等问题。非陆上核试验也会释出残余的原子尘,现已依《部分禁止核试验条约》明令禁止。 名称 钚(Pu) 系列 锕系元素 周期,元素分区 3,7,f 类型 金属 外表 银白色 原子量 [244] 原子半径(计算值) 159 范德华半径 187±1 pm 氧化态 +4(+3、+5、+6、+7) 电负性 1.28(鲍林标度) 核外电子排布 [氡]5f6 7s2(2-8-18-32-24-8-2) 电离能 584.7 KJ/mol 晶体结构 单斜晶系。单斜晶型(钚α和钚β)、斜方晶型(钚γ)、面心立方晶型(钚δ)、体心四方晶型(钚δ')、体心立方晶型(钚ε)。 晶胞参数 a=618.3 pm b=482.2 pm c=1096.3 pm α=90° β=101.790° γ=90° 钚同位素的衰变热: 同位素 衰变方式 半衰期年 衰变热W/kg 自发裂变中子1/(g·s) 钚-238 α衰变成为铀-234 87.74 560 2600 钚-239 α衰变成为铀-235 24100 1.9 0.022 钚-240 α衰变成为铀-236 6560 6.8 910 钚-241 β衰变成为镅-241 14.4 4.2 0.049 钚-242 α衰变成为铀-238 376000 0.1 1700 混合物与化学性质:室温时,纯钚金属是银灰色、但因氧化而锈蚀。 钚在水溶液中形成四种离子氧化态: Pu(III)—Pu^3+(蓝紫色)Pu(IV)—Pu^4+(黄棕色)Pu(V)—PuO^2+(粉红色)Pu(VI)—PuO2^2+(粉桔色)Pu(VII)—PuO5^3?(绿色)–七价离子较稀有钚溶液所呈现的颜色决定于氧化态和酸阴离子的性质。 钚的酸阴离子种类影响了错合(原子与中心原子结合)的程度。卤化物:三氟化钚为蓝紫色固体,熔点为1425±3℃;在没有铝或锆离子存在时,很难溶于酸中。三氟化钚可由钚(IV)的硝酸盐、氧化物、氢氧化物等化合物与无水氟化氢在550~600℃反应制得,也可在含钚(III)的水溶液中加入氟离子沉淀而制得。三氟化钚是还原法制金属钚的原料。四氟化钚为淡棕色(PuF4·2.5H2O为粉红色),熔点为1037℃,沸点约1277℃;微溶于水,只能溶于含有硼酸、铝(III)或铁(III)的溶液中。四氟化钚可由钚(IV)的氧化物、硝酸盐、草酸盐等化合物在有氧气存在的条件下与无水氟化氢进行高温反应而制得。四氟化钚也是还原法制金属钚的原料。六氟化钚在-180℃时是白色固体,液态和气态呈棕色到红棕色,熔点为51.59℃,沸点为62.16℃;六氟化钚在热力学上是不稳定的,它是一个很强的氧化剂;能与四氟化铀、二氧化硫、一氧化碳、二氧化碳等反应生成四氟化钚,与潮湿空气或水发生非常激烈的反应;六氟化钚由于α辐解而不断生成四氟化钚。六氟化钚可由二氧化钚或四氟化钚在500~700℃高温下与氟气反应制得。钚(VI)的其他氟化物有PuO2F2、M2PuO2F4·H2O和MPuO2F3·H2O(M为NH4、Na、K等)。三氯化钚是蓝至绿色的固体,熔点为750℃,沸点为1767℃;易吸潮,易溶于酸和水。三氯化钚可由多种方法制备,通常由二氧化钚与光气在高温下反应而制得。在制备中,大多数其他元素生成挥发性的氯化物,而三氯化钚不挥发,因而钚的纯度较高。三氯化钚也是制备金属钚的一种化合物。四氯化钚是不稳定化合物,容易分解,不易制得。钚(IV)的其他氯化物有 M2PuCl6(M为Cs、Rb、K、Na等)。其他已经制得的化合物还有:三溴化钚,熔点约为681℃;三碘化钚,熔点约777℃。氧化物:二氧化钚是绿棕色到黄棕色的固体,在氦气中的熔点为2280±30℃,蒸气压很低;它的化学惰性很大,在盐酸和硝酸中溶解极慢且不完全,在沸腾的氢溴酸中溶解较快,用硫酸氢钠等熔剂在熔融条件下可溶解二氧化钚;高温下二氧化钚可与氟化氢反应生成三氟化物,有氧气存在时生成四氟化物;高温下与氟作用生成六氟化钚,与锌镁合金反应还原生成金属钚。由于二氧化钚具有高熔点、辐照稳定、同金属互容以及容易制备等特性,是核燃料的一种适用的组成形式。二氧化钚可由金属钚或其化合物(磷酸盐除外)在空气中灼烧制得,也可由含氧化合物在真空或惰性气氛中加热到1000℃而制得。β-三氧化二钚的熔点为2085±25℃;可由二氧化钚与碳在氦中加热到1625℃制得。α-三氧化二钚可由在真空中加热二氧化钚到1650~1800℃ 而制得。α-三氧化二钚由二氧化钚熔化时损失氧而制得,其熔点为2360±20℃。碳化物:已知有二碳化三钚、碳化钚、三碳化二钚和二碳化钚。室温下碳化钚在空气中稳定,但在400℃时则剧烈燃烧;不与冷水作用,但与热水反应生成三价氢氧化物、氢和甲烷的混合物,以及少量的其他碳氢化合物;碳化钚与冷硝酸作用很慢。三碳化二钚的化学性质与碳化钚略有不同,三碳化二钚在高温下的氧化作用及在酸和沸水中的水解作用都比碳化钚弱。钚的碳化物可由金属钚、二氧化钚或氢化钚在高温下与石墨反应而制得。反应条件不同,可以制得不同组分的钚的碳化物。钚的碳化物由于具有较高的导热性、低的蒸气压和较大的钚密度,可以做核反应堆的燃料。氮化物:已知钚的唯一氮化物为氮化钚。氮化钚在氩气氛中熔点为2450±50℃;遇冷水缓慢水解并生成二氧化钚,氮化钚易溶于无机酸中;与氮化铀能形成一系列固溶体。氮化钚具备核燃料的某些特性,如熔点高、钚密度高和好的导热性,但它的主要缺点是在高温下挥发性较高和易分解。氮化钚可由氢化钚与氮在高于 230℃时反应而制得。草酸盐:钚(III)的草酸盐Pu2(C2O4)3·10H2O和钚(IV)的Pu(C2O4)2·6H2O都是难溶性化合物,随着加热,它们逐渐失去其结晶水,随后分解,最终产物为二氧化钚。钚的草酸盐可由钚的相应氧化态的盐的稀酸溶液与草酸或草酸钠沉淀而制得。能源与热源:同位素钚-238的半衰期为87.74年。 它会放出大量热能,伴随着低能的伽马和自发裂变射线/粒子。它是α辐射体,同时具有高辐射能及低穿透性,故仅需低度防护措施。单一纸张就可以抵挡钚-238所放射出的α粒子;同时,每公斤的钚-238可产生约570瓦特热能。
沫沫晓七
b ※文字(1)B KK: [] DJ: [] n. 1. 英语字母中的第二个字母,小写为b 2. (用大写B)乙等(成绩)3.(大写)化学上表示硼元素 b KK: [] DJ: [] n. 1. 英语字母的第二个字母 B b 和A一样,字母B也可以追溯到古代腓尼基。在腓尼基字母表中B叫beth,代表房屋,在希伯来语中B也叫beth,也含房屋之意。字母B原来形似原始社会的两室房屋,小写字母b是后来从大写字母B衍变出来的。在今 约旦河西岸有一犹太教,基督教圣地叫Bethlehem。该词中至今还包含着beth这一成分。B在字母表中之所以排在第二位也许是因为对人类的生存来说住的重要性仅次于衣食 (2)硼 拼音:pēng péng 部首:石,部外笔画:8,总笔画:13五笔86&98:DEEG 仓颉:MRBB 笔顺编号:1325135113511 四角号码:17620 UniCode:CJK 统一汉字 U+787C硼,原子序数5,原子量10.811。约公元前200年,古埃及、罗马、巴比伦曾用硼沙制造玻璃和焊接黄金。1808年法国化学家盖·吕萨克和泰纳尔分别用金属钾还原硼酸制得单质硼。硼在地壳中的含量为0.001%。天然硼有2种同位素:硼10和硼11,其中硼10最重要。 硼为黑色或银灰色固体。晶体硼为黑色,熔点约2300°C,沸点3658°C,密度2.34克/厘米³,硬度仅次于金刚石,较脆。原子体积:(立方厘米/摩尔)4.6元素在海水中的含量:(ppm)4.41元素在太阳中的含量:(ppm) 0.002地壳中含量:(ppm)950莫氏硬度:9.3 氧化态:Main B+3 Other 化学键能: (kJ /mol) B-H 381 B-H-B 439 B-C 372 B-O 523 B-F 644 B-Cl 444 B-B 335 晶胞参数:a = 506 pm b = 506 pm c = 506 pm α = 58.06° β = 58.06° γ = 58.06° 电离能 (kJ/ mol) M - M+ 800.6 M+ - M2+ 2427 M2+ - M3+ 3660 M3+ - M4+ 25025 M4+ - M5+ 32822 晶体结构:晶胞为三斜晶胞。硼在室温下比较稳定,即使在盐酸或氢氟酸中长期煮沸也不起作用。硼能和卤组元素直接化合,形成卤化硼。硼在600~1000°C可与硫、锡、磷、砷反应;在1000~1400°C与氮、碳、硅作用,高温下硼还与许多金属和金属氧化物反应,形成金属硼化物。这些化合物通常是高硬度、耐熔、高电导率和化学惰性的物质,常具有特殊的性质。硼的应用比较广泛。硼与塑料或铝合金结合,是有效的中子屏蔽材料;硼钢在反应堆中用作控制棒;硼纤维用于制造复合材料等。元素名称:硼元素原子量:10.81元素类型:非金属原子序数:5元素符号:B元素中文名称:硼元素英文名称:Boron相对原子质量:10.81核内质子数:5核外电子数:5核电核数:5质子质量:8.365E-27质子相对质量:5.035所属周期:2所属族数:IIIA摩尔质量:11氢化物:BH3氧化物:B2O3最高价氧化物化学式:B2O3密度:2.34熔点:2300.0沸点:3658热导率: W/(m·K)27.4 声音在其中的传播速率:(m/S)16200外围电子排布:2s2 2p1核外电子排布:2,3颜色和状态:固体原子半径:1.17常见化合价:+3发现人:戴维、盖吕萨克、泰纳 发现年代:1808年发现过程:1808年,英国的戴维和法国的盖吕萨克、泰纳,用钾还原硼酸而制得硼。元素描述:它是最外层少于4个电子的仅有的非金属元素。其单质有无定形和结晶形两种。前者呈棕黑色到黑色的粉末。后者呈乌黑色到银灰色,并有金属光泽。硬度与金刚石相近。无定形的硼密度2.3克/厘米3,(25-27℃);晶形的硼密度2.31克/厘米3,熔点2300℃,沸点2550℃,化合价3。在室温下无定形硼在空气中缓慢氧化,在800℃左右能自燃。硼与盐酸或氢氟酸,即使长期煮沸,也不起作用。它能被热浓硝酸和重铬酸钠与硫酸的混合物缓慢侵蚀和氧化。过氧化氢和过硫酸铵也能缓慢氧化结晶硼。上述试剂与无定形硼作用激烈。与碱金属碳酸盐和氢氧化物混合物共熔时,所有各种形态的硼都被完全氧化。氯、溴、氟与硼作用而形成相应的卤化硼。约在600℃硼与硫激烈反应形成一种硫化硼的混合物。硼在氮或氨气中加热到1000℃以上则形成氮化硼,温度在1800-2000℃是硼和氢仍不发生反应,硼和硅在2000℃以上反应生成硼化硅。在高温时硼能与许多金属和金属氧化物反应,生成金属硼化物。元素来源:在自然界中,硼只以其化合物形式存在着(像在硼砂、硼酸中,在植物和动物中只存在有痕量的硼),通常由电解熔融的氟硼酸钾和氯化钾或热还原它的其他化合物(如氧化硼)制得制备方法有:硼的氧化物用活泼金属热还原;用氢还原硼的卤化物;用碳热还硼砂;电解熔融硼酸盐或其他含硼化合物;热分解硼的氢化合物上述方法所得初产品均应真空除气或控制卤化,才可制得高纯度的硼。元素用途:它主要用于冶金(如为了增加钢的硬度)及核子学中,因为它吸收中子能力强由于硼在高温时特别活泼,因此被用来作冶金除气剂、锻铁的热处理、增加合金钢高温强固性,硼还用于原子反应堆和高温技术中。棒状和条状硼钢在原子反应堆中广泛用作控制棒。由于硼具有低密度、高强度和高熔点的性质,可用来制作导弹的火箭中所用的某些结构材料。硼的化合物在农业、医药、玻璃工业等方面用途很广。元素辅助资料:天然含硼的化合物硼砂(Na2B4O7·10H2O)早为古代医药学家所知悉。我国西藏是世界上盛产硼砂的地方。1702年法国医生霍姆贝格首先从硼砂制得硼酸,称为salsedativum,即镇静盐。1741年法国化学家帕特指出,硼砂与硫酸作用除生成硼酸外,还得到硫酸钠。1789年拉瓦锡把硼酸基列入元素表。1808年英国化学家戴维和法国化学家盖吕萨克、泰纳各自获得单质硼。硼的拉丁名称为 boracium,元素符号为B。这一词来自borax(硼砂)。硼,原子序数5,原子量10.811。约公元前200年,古埃及、罗马、巴比伦曾用硼沙制造玻璃和焊接黄金。1808年法国化学家盖·吕萨克和泰纳尔分别用金属钾还原硼酸制得单质硼。硼在地壳中的含量为0.001%。天然硼有2种同位素:硼10和硼11,其中硼10最重要。 硼为黑色或银灰色固体。晶体硼为黑色,熔点约2300°C,沸点2550°C,密度2.34克/厘米³,硬度仅次于金刚石,较脆。硼在室温下比较稳定,即使在盐酸或氢氟酸中长期煮沸也不起作用。硼能和卤组元素直接化合,形成卤化硼。硼在600~1000°C可与硫、锡、磷、砷反应;在1000~1400°C与氮、碳、硅作用,高温下硼还与许多金属和金属氧化物反应,形成金属硼化物。这些化合物通常是高硬度、耐熔、高电导率和化学惰性的物质,常具有特殊的性质。硼的应用比较广泛。硼与塑料或铝合金结合,是有效的中子屏蔽材料;硼钢在反应堆中用作控制棒;硼纤维用于制造复合材料等。硼产品主要有硼化物三溴化硼二硼化钛二硼化铬氮化硼99.99%六方氮化硼99.9%六方氮化硼硼合金硼铜合金硼钢合金硼化物(1)三溴化硼:无色或稍带黄色的发烟液体,有强烈的刺激性臭味。临界温度300℃,折射率1.5312。(2)二硼化钛:二硼化钛为灰白色六方形晶体或粉末,无味。其熔点2980℃,密度4.5~4.52,硬度(Hi)3600。它具有优良的抗氧化性及导电性能。平均粒径D=4~8μ。(3) 二硼化铬:熔点1760℃,抗氧化性能好,高温强度大。(3)在一些网络竞技游戏中,b是back的简称,即撤退之意。(4)在电影界,B指偷工减料的劣等电影。(5)计算机类B即表示Byte(字节参照)1 B=8 Bit一种数据单位,目前情况下几乎总是由八位数据组成。一个字节可以代表一个单独的字符,例如字母、数字或标点符号。因为一个字节代表的信息量很小,所以计算机内存和存储器通常以千字节、兆字节,或千兆字节为单位给出。注:一个标准的英文字母占一个字节(1 B)一个标准的汉字占两个字节(2 B)(6)选择题选项中的第二个选项。(7)绘画中,b表示black,与hard连用,有2b.hb.2h等。 (8)物理学中,用B表示磁感应强度。(7)在汉语中,B是用来骂人的语气词,常见于网络中(网络用语)。(8)在五线谱中是降b,也就是说音要降半格。 (9)在数学中,B表示一个未知数。 (10)在医学中,B是血型的一种 (7)音乐中:B大调b小调
优质英语培训问答知识库