期刊问答网 论文发表 期刊发表 期刊问答

数学论文几何

  • 回答数

    2

  • 浏览数

    320

casnowolf
首页 > 期刊问答网 > 期刊问答 > 数学论文几何

2个回答 默认排序1
  • 默认排序
  • 按时间排序

fangxz120

已采纳
何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:1、作为数学科学的空间几何(1)是一个完整的知识体系(2)是一种论证几何,或称之为证明几何(3)是存在于严密的公理体系之中的2、作为小学数学课程的空间几何(1)是几何学中最基础的部分(2)是一种直观几何,或称之为经验几何、实验几何(3)是存在于不太严密的局部组织之中的明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:一、 小学几何学习的基本分析这部分内容又分三个知识点:(一)、小学数学几何学习的基本内容:也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。(二)、小学数学几何学习的基本目标:(分两个方面表述)1、从活动的特征表述(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;(2)能从较复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系;(3)能描述出实物或图形的运动和变化;(4)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。2、从内容的特征表述(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)(2)使学生能建立有关长度、面积或体积等的基本概念(3)能够对不太远的物体间的方位、距离和大小有较正确的估计(4)能从较复杂的图形中辨别有各种特征的图形(三)、小学数学几何学习的基本特点:(两点)1、经验是儿童几何学习的起点儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。儿童在玩各种积木或玩具的过程中,在选择和使用各种生活用具的过程中,在接触到的各种自然现象中,甚至于他们在玩类似“过家家”的游戏中,逐渐感觉到了各种用具在几何方面的特点。2、操作是儿童构建空间表象的主要形式儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想像的。二、儿童形成空间观念的基本特征发展儿童的空间观念是小学数学几何学习的基本价值。所谓空间观念,就是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。下面就结合实例从“思维发展”和“空间观念形成”两大方面具体谈谈“空间观念”。(一)儿童几何思维水平的发展:1、水平0阶段(前认知阶段) 1)直线和曲线(线能区分)(2)正方形和平行四边形(面不能区分)2、水平1阶段(直观化阶段)(1)四边形和三角形(能从边的数量上去区分)(2)正方形和菱形(不能从角的特征上去区分)(3)长方形和长方体(不能区分面和体)3、水平2阶段(描述/分析阶段)(1)长方形、四边形、三角形(不同分类方法代表不同水平)(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)4、水平3阶段(抽象/关联阶段)(1)平行四边形剪拼成长方形(2)三角形拼成平行四边形(能通过动手操作将新知转化为旧知进行学习)(3)长方形与长方体(能区分面和体)(二)儿童空间观念形成与发展的基本特征(三点) 1、儿童空间想像力的发展所谓的空间想像能力,就是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。低年段儿童在学习空间图形时基本上是从认识“二维图形”开始的,但儿童积累的却是大量的“三维”的几何经验,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观物体,比如让学生举例说说生活中有哪些物体的形状是长方形的?学生往往会举到诸如课桌之类的,很难抽象出桌面的形状才是长方形。甚至到了较高年级学习“圆的认识”时,还会受到直观物体“球”的干扰。2、儿童形成空间观念的主要心理特点(1)对直观的依赖较大“闭合的区域”往往比“开放的区域”更为直观。如对三角形的性质理解可能会比对角的性质认识更容易;对周长的理解可能会比面积更容易。正如我们听到许多教师上《面积与面积单位》时,总是让学生通过自己的手的触摸来体验“面”的大小,并与周长作出对比,逐步获得对“面积”的理解。(2)用经验来思考和描述性质或概念无法运用精确语言来描述“圆”,对“圆上”、“圆内”或“圆外”等概念还只能建立在“圆圈上”、“圆的里面”和“圆的外面”等上面。(3)空间观念的形成依靠渐进的过程学龄前儿童已经认识三角形,但这只是对形状的初步感知,到了低年段,能用“三条边围起来”这样的直观特征来辨识图形。到稍高年段,才开始逐渐获得“三角形”性质方面的认识。(4)容易感知图形的外显性较强的因素对“角”的本质属性的认识,往往会集中在组成角的两条边的长短上,而忽视两条边的“张开”程度,也是因为边的长短的视觉刺激明显要大于两条边的“张开”程度,甚至我前几天在问学生如果拿一个放大镜看角时,角的大小怎样时,学生居然说角会变大。(5)对图形性质间的关系有一个逐渐理解的过程一年级时,学生只能辨认长方形、正方形、三角形、圆形的形状;二、三年级时,学生不仅能辨认长方形、正方形、梯形、平行四边形等平面图形,还能从这些图形的基本性质上分析,并对圆柱和球也有了初步的认识;到了四、五年级,能深入地分析图形的性质及关系;而到了六年级,学生则能较好地掌握立体图形的特征。可见学生对图形的掌握及空间观念的发展都是一个渐变的过程。(6)对图形的识别倚赖标准形式一位老师在上《三角形的认识》时,为了让学生更好地理解“高”的概念,她先从一个正放的三角形入手,让学生画高;接着她把这个三角形旋转一下,变成倒放的三角形了,问学生这还是不是三角形的高,学生就觉得它不是高了。可见学生对图形的识别还仅仅依赖于标准形式,一旦变成了“变式图形”,学生识别起来就比较困难了。(7)依据平面再造立体图形的空间想像能力是逐步形成的有的教师在学生初次学习“长方体”时,用三根“拉杆天线”,将它们的三个点按“长”、“宽”、“高”这三个维度焊接在一起。然后不断地通过拉动天线的三个方向的长度,让学生在头脑中再造相应的形体大小的形象,以此来发展儿童的空间想像能力。 3、儿童形成空间观念的主要知觉障碍1、空间识别障碍空间识别能力表现出的是空间的方位感,它无论是在日常的生活中,还是在空间几何的学习中,都是一个非常重要的能力。比如估计出要去的某个地方的大致方位,就如平时非常重要的方向感;估计出两个物体之间的大致距离等等,都涉及到空间识别能力。而这些能力在我们今后的生活中作用是非常大的。2、视觉知觉障碍比如让学生解决“教室粉刷墙壁和天花板,要粉刷多少面积”或是解决“游泳池铺瓷砖”等,其实都是关于长方体的表面积问题,由于学生看到教室是一个完整的长方体,他们就往往会忽略了有一个面不算在内的问题。三、小学几何教学的主要策略前面我在“几何学习的基本特点”中也已强调两点:经验是儿童几何学习的起点;操作是儿童构建空间表象的主要形式。针对这两大特点,在几何教学中应注意运用以下三点策略:(一)注重儿童的生活经验(1)利用操作体验来获得对象形状特征的认识比如《三角形的分类》可以给定学生一些不同形状的三角形,让学生按自己的理解去分类,而不同的分类就显示着他们对对象形体特征的表征。(2)利用已经建立的有关图形形体经验帮助概括图形的性质比如学习平行四边形和梯形时,是在学生学习了长方形、正方形之后的,学生自然会按分析长方形、正方形的方法,从边、角的方面去分析它们的特征。(二)观察对象的形体特征是基础(1)观察形体特征是获得对象性质的基础比如长方体中有一种特殊的是有两个面是正方形的,让学生凭空去想象其余四个面有什么关系是十分困难的,必须通过实物的观察,让学生明白它的宽和高相等,因此其余四个面是大小完全相等的,从而获得性质,得出结论。(2)注意运用变式如前面提到的认识三角形的高时,应多采用变式,以加深学生对“高”的概念的理解。又如,认识圆的半径、直径时,不必过于强调概念,而是要多一些变式的练习,以反例来加强学生对半径、直径的认识。(三)强化动手操作(1)搭建活动我在上《立体图形的整理和复习》时,让学生通过“搭一搭”帮助学生思考在立方体每个面都打一个直穿洞口的长方体,使学生较好地理解被挖掉的有7个小立方体。(2)剪拼与折叠活动比如《三角形的内角和》一课,可以让学生通过剪拼、折叠的方法得出三角形的内角和是180度。(3)实物操作活动在学习圆锥的体积公式时,必须让学生通过实物操作,发现等底等高的圆柱和圆锥之间的关系,从而得出圆锥体积计算公式。(4)测量活动《三角形的内角和》一课,学生最初提出的验证三角形内角和是否为180度的方法都是量一量的方法,这个测量活动也是很有必要的,只有引发认知冲突,才会更深入地解决“误差”的问题,更好地引出剪拼、折叠的方法。(5)作图活动四、丰富的想像和有效的交流发展儿童的空间想像能力是小学几何学习的重要任务,而丰富的想像是发展学生空间想像力的有效方式,空间想像力不仅包括对方位、立体图形的想像,还应该包括对平面表示的三维图形的透视能力,以及对图形的再造、组合或分解能力。(这让我想到一种三维图)有效交流也是促进学生几何语言发展的有效手段。我的思考:鉴于以上收获,引发了我的思考。给孩子留一片想像的时空直观演示,该出手时才出手!孔子曰:“不愤不启,不悱不发。”只有在学生先独立思考、展开想像的基础上,在学生空间想像能力无法达到某个高度时,才去演示和启发,才能更好地培养学生的空间观念,这不正是我们小学数学几何教学所应追求的目标吗?但愿我今天的粗浅看法能给大家带来一些思考!

数学论文几何

207 评论(15)

玉壶冰清

魅力无比的定理证明 ——勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA’’ C。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA转引自: 中“数学的发现”栏目。图无法转贴,请查看原文。
283 评论(14)

相关问答