品尝滋味real
初一级下学期期中考试数学试题 一.选择题(每小题3分,共 45分) 1. 196的算术平方根是( ) A. 14 B. 16 C. ±14 D. 2.无理数是( ) A. 无限循环小数 B. 带根号的数 C. 除有限小数以外的所有实数 D.除有理数以外的所有实数 3、下列图案是我国几家银行的标志,其中轴对称图形有 ( ) (A)1个 (B)2个 (C)3个 (D)4个 4. 的平方根是( ) A. 2 B. ±2 C. ±4 D. 不存在 5.在下列各式中,正确的是( ) A. B. C. D. 6.等腰三角形的顶角是80°,则它的一个底角是( ) A.40° B.50° C.60° D.30° 7.三个正方形的面积如右图(4),正方形A的面积为( ) A. 6 B. 36 C. 64 D. 8 8. 如图,下列三角形中是直角三角形的是( ) 9、小明一出校门先加速度行驶,然后匀速行驶一段后开始减速,最后停下,下面的图可以近似地刻画出他在这一过程中的时间与速度的变化情况是( )。 A 速度 B 速度 C 速度 D 速度 时间 时间 时间 时间 (A) (B) (C) (D) 10、面积是160平方米的长方形,它的长y米,宽x米之间的关系表达式是 ( ) A. y=160x B. y= C y=160+x D y=160-x 11.右图是一个圆桶儿,底面直径为24cm,高为32cm,则桶内能容下 的最长的木棒为( ) A. 20cm B. 50cm C. 40cm D. 45cm 12、右图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( ) A.1个 B.2个 C.3个 D.4个 (1)汽车行驶时间为40分钟; (2)AB表示汽车匀速行驶; (3)在第30分钟时,汽车的速度是90千米/时; (4)第40分钟时,汽车停下来了. 13.下列说法错误的是 ( ) A.关于某条直线对称的两个三角形一定全等;B.轴对称图形至少有一条对称轴 C.全等三角形一定能关于某条直线对称;D.角是关于它的平分线对称的图形 14.在直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的( ) 倍 倍 倍 倍 15.已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;③若A、A′是对应点,则直线1垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是( ) A.①③④ B.③④ C.①② D.①②③④ 2006学年度上学期初一级数学期中考试答卷 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 二、填空题:(每小题5分,共 25分) 1、小芳在镜子里看镜子对面电子钟的示数为2∶35,你能确定准确时 间是 2. 的平方根是 ,;的立方根是 。 3、小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是 。 4、某日的温度变化况如图,上午9点的温度是_____oC,与晚上_____点的温度相同,这天的最高气温是____,此时是在_ __点到达的,最低气温是____点达到____oC,这一天的温差是________℃,从最低气温到最高气温经过_______小时,从_______温度是上升的,从_______温度是下降的. 5、如图, ABC中, C= ,AD平分 BAC交BC于D,DE⊥AB于E,AB=10cm,AC=6cm,则 BDE的周长=__________cm。 三、解答题:(每小题5分,共 30分) 1.比较 与 的大小; 2.化简: 3.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹) 4.如图所示,要在离地面5米处的电线杆上的两侧引拉线AB和AC固定电线杆。生活经验表明,当拉线的固定点B(或C)与电线杆底端点D的距离为其一侧长度的 时,电线杆比较稳定。现要使电线杆稳定,问拉线至少需要多长才能符合要求?试用你学过的知识进行解答。(精确到1米) 5、小明画了一个如图所示的四边形,其中AB=4,BC=12,CD=13,DA=3,∠A= ,你能求出四边形ABCD的面积吗? 6、父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格。 距离地面高度(千米) 0 1 2 3 4 5 温度(℃) 20 14 8 2 根据上表,父亲还给小明出了下面几个问题,你和小明一起回答。 (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的? (3)你知道距离地面5千米的高空温度是多少吗? (4)你能猜出距离地面6千米的高空温度是多少吗? 2006学年度上学期期中考试初一级数学试题答案 一.选择题(每小题3分,共 45分) 1. A. 2. D. 3、C 4. B. 5. B. 6.B. . 9、C 10、B. 11. C. 12、C. 13.C. 14.A. 15.D. 二、填空题:(每小题5分,共 25分) 1、9∶25 2. ,; 3、900 4、26oC,21点,32℃,15,3点达到22oC,10℃,12,从3点到15点,从15点到次日3点. 5、12cm。 三、解答题:(每小题5分,共 30分) 1. < ; 2. 2 3.作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置 4. 2米。 5、36 6、 (1)高度与温度。高度。温度。 (2)变小 (3) ℃ (4)-16℃
scarlett0306
考场潇洒不虚枉,多年以后话沧桑!祝七年级数学期中考试时超常发挥!下面是我为大家整编的初一数学下册期中试卷人教版,大家快来看看吧。
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的
的平方根是()
A.﹣2 C.±2
2.在…、 、、 、 、 、 中,无理数的个数是()
3.如图,下列各组角中,是对顶角的一组是()
A.∠1和∠2 B.∠3和∠5 C.∠3和∠4 D.∠1和∠5
4.下列计算正确的是()
A. =±15 B. =﹣3 C. = D. =
5.在平面直角坐标系中,点P(﹣2,1)位于()
A.第二象限 B.第二象限 C.第三象限 D.第四象限
6.在下列表述中,能确定位置的是()
A.北偏东30° B.距学校500m的某建筑
C.东经92°,北纬45° D.某电影院3排
7.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()
° ° ° °
9.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()
10.命题“垂直于同一条直线的两条直线互相平行”的题设是()
A.垂直 B.两条直线
C.同一条直线 D.两条直线垂直于同一条直线
11.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()
° ° ° °
12.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()
A.﹣5
二、填空题:本大题共6小题,每小题3分,共18分
13.计算: =.
14. ( + )=.
15.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为.
16.将点A(4,3)向左平移个单位长度后,其坐标为(﹣1,3).
17.已知点P在x轴上,且到y轴的距离为3,则点P坐标为.
18.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=°.
三、解答题:本大题共6小题,共46分
19.计算题: ﹣ + + .
20.求x值:(x﹣1)2=25.
21.如图,三角形ABC在平面直角坐标系中,
(1)请写出三角形ABC各顶点的坐标;
(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.
解:(1)A(,),B(,),C(,)
(2)A′(,),B′(,),C′(,)
22.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
∵EF∥AD,()
∴∠2=.(两直线平行,同位角相等;)
又∵∠1=∠2,()
∴∠1=∠3.()
∴AB∥DG.()
∴∠BAC+=180°()
又∵∠BAC=70°,()
∴∠AGD=.
23.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.
24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求证:AB∥CD;
(2)求∠C的度数.
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的
的平方根是()
A.﹣2 C.±2
【考点】平方根.
【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.
【解答】解:∵±2的平方等于4,
∴4的平方根是:±2.
故选C.
2.在…、 、、 、 、 、 中,无理数的个数是()
【考点】无理数.
【分析】先把 化为 , 化为3的形式,再根据无理数就是无限不循环小数进行解答即可.
【解答】解:∵ = , =3,
∴在这一组数中无理数有:在…、 、 共3个.
故选B.
3.如图,下列各组角中,是对顶角的一组是()
A.∠1和∠2 B.∠3和∠5 C.∠3和∠4 D.∠1和∠5
【考点】对顶角、邻补角.
【分析】根据对顶角的定义,首先判断是否由两条直线相交形成,其次再判断两个角是否有公共边,没有公共边有公共顶点的是对顶角.
【解答】解:由对顶角的定义可知:∠3和∠5是一对对顶角,
故选B.
4.下列计算正确的是()
A. =±15 B. =﹣3 C. = D. =
【考点】算术平方根.
【分析】根据算术平方根的定义解答判断即可.
【解答】解:A、 ,错误;
B、 ,错误;
C、 ,错误;
D、 ,正确;
故选D
5.在平面直角坐标系中,点P(﹣2,1)位于()
A.第二象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标.
【分析】根据横坐标比零小,纵坐标比零大,可得答案.
【解答】解:在平面直角坐标系中,点P(﹣2,1)位于第二象限,
故选B.
6.在下列表述中,能确定位置的是()
A.北偏东30° B.距学校500m的某建筑
C.东经92°,北纬45° D.某电影院3排
【考点】坐标确定位置.
【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.
【解答】解:A、北偏东30°,不能确定具体位置,故本选项错误;
B、距学校500m的某建筑,不能确定具体位置,故本选项错误;
C、东经92°,北纬45°,能确定具体位置,故本选项正确;
D、某电影院3排,不能确定具体位置,故本选项错误.
故选:C.
7.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
【考点】坐标确定位置.
【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.
【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).
故选D.
8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()
° ° ° °
【考点】平行线的性质.
【分析】先求出∠3,再由平行线的性质可得∠1.
【解答】解:如图:
∠3=∠2=38°°(两直线平行同位角相等),
∴∠1=90°﹣∠3=52°,
故选A.
9.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是()
【考点】平移的性质.
【分析】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.
【解答】解:一个正方形面积为4,而把一个正方形从①﹣④变换,面积并没有改变,所以图⑤由4个图④构成,故图⑤面积为4×4=16.
故选B.
10.命题“垂直于同一条直线的两条直线互相平行”的题设是()
A.垂直 B.两条直线
C.同一条直线 D.两条直线垂直于同一条直线
【考点】命题与定理.
【分析】找出已知条件的部分即可.
【解答】解:命题“垂直于同一条直线的两条直线互相平行”的题设是两条直线垂直于同一条直线.
故选D.
11.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠3=124°,∠2=88°,则∠1的度数为()
° ° ° °
【考点】平行线的性质.
【分析】如图,首先运用平行线的性质求出∠4的大小,然后借助平角的定义求出∠1即可解决问题.
【解答】解:如图,∵直线l4∥l1,
∴∠1+∠AOB=180°,而∠3=124°,
∴∠4=56°,
∴∠1=180°﹣∠2﹣∠4
=180°﹣88°﹣56°
=36°.
故选B.
12.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根为()
A.﹣5
【考点】平方根;立方根.
【分析】根据一个正数有两个平方根,它们互为相反数,求出a的值,从而得出这个正数的两个平方根,即可得出这个正数,计算出44﹣x的值,即可解答.
【解答】解:∵正数x的两个平方根是3﹣a和2a+7,
∴3﹣a+(2a+7)=0,
解得:a=﹣10,
∴这个正数的两个平方根是±13,
∴这个正数是169.
44﹣x=44﹣169=﹣125,
﹣125的立方根是﹣5,
故选:A.
二、填空题:本大题共6小题,每小题3分,共18分
13.计算: =﹣3.
【考点】立方根.
【分析】根据(﹣3)3=﹣27,可得出答案.
【解答】解: =﹣3.
故答案为:﹣3.
14. ( + )=4.
【考点】二次根式的混合运算.
【分析】根据二次根式的乘法法则运算.
【解答】解:原式= × + ×
=3+1
=4.
故答案为4.
15.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=40°,则∠BOD为50°.
【考点】垂线;对顶角、邻补角.
【分析】根据垂直的定义求得∠AOE=90°;然后根据余角的定义可以推知∠AOC=∠AOE﹣∠COE=50°;最后由对顶角的性质可以求得∠BOD=∠AOC=50°.
【解答】解:∵OE⊥AB,
∴∠AOE=90°;
又∵∠COE=40°,
∴∠AOC=∠AOE﹣∠COE=50°,
∴∠BOD=∠AOC=50°(对顶角相等);
故答案是:50°.
16.将点A(4,3)向左平移5个单位长度后,其坐标为(﹣1,3).
【考点】坐标与图形变化-平移.
【分析】由将点A(4,3)向左平移得到坐标(﹣1,3),根据横坐标的变化可得平移了几个单位长度,依此即可求解.
【解答】解:4﹣(﹣1)=4+1=5.
答:将点A(4,3)向左平移5个单位长度后,其坐标为(﹣1,3).
故答案为:5.
17.已知点P在x轴上,且到y轴的距离为3,则点P坐标为(±3,0).
【考点】点的坐标.
【分析】先根据P在x轴上判断出点P纵坐标为0,再根据距离的意义即可求出点P的坐标.
【解答】解:∵点P在x轴上,
∴点P的纵坐标等于0,
又∵点P到y轴的距离是3,
∴点P的横坐标是±3,
故点P的坐标为(±3,0).
故答案为:(±3,0).
18.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=70°.
【考点】平行线的性质.
【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【解答】解:∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答案为:70.
三、解答题:本大题共6小题,共46分
19.计算题: ﹣ + + .
【考点】实数的运算;立方根.
【分析】原式利用平方根、立方根定义计算即可得到结果.
【解答】解:原式=2﹣2﹣ +
=0.
20.求x值:(x﹣1)2=25.
【考点】平方根.
【分析】根据开方运算,可得方程的解.
【解答】解:开方,得
x﹣1=5或x﹣1=﹣5,
解得x=6,或x=﹣4.
21.如图,三角形ABC在平面直角坐标系中,
(1)请写出三角形ABC各顶点的坐标;
(2)把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′,在图中画出三角形A′B′C′的位置,并写出顶点A′,B′,C′的坐标.
解:(1)A(﹣1,﹣1),B(4,2),C(1,3)
(2)A′(1,2),B′(6,5),C′(3,6)
【考点】作图-平移变换.
【分析】(1)根据各点在坐标系中的位置写出各点坐标即可;
(2)画出平移后的三角形,写出各点坐标即可.
【解答】解:(1)由图可知,A(﹣1,﹣1),B(4,2),C(1,3).
故答案为:(﹣1,﹣1),(4,2),(1,3);
(2)由图可知A′(1,2),B′(6,5),C′(3,6).
故答案为:(1,2),(6,5),(3,6).
22.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
∵EF∥AD,(已知)
∴∠2=∠3.(两直线平行,同位角相等;)
又∵∠1=∠2,(已知)
∴∠1=∠3.(等量代换)
∴AB∥DG.(内错角相等,两直线平行;)
∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补;)
又∵∠BAC=70°,(已知)
∴∠AGD=110°.
【考点】平行线的判定与性质.
【分析】根据题意,利用平行线的性质和判定填空即可.
【解答】解:∵EF∥AD(已知),
∴∠2=∠3.(两直线平行,同位角相等)
又∵∠1=∠2,(已知)
∴∠1=∠3,(等量代换)
∴AB∥DG.(内错角相等,两直线平行)
∴∠BAC+∠AGD=180°.(两直线平行,同旁内角互补)
又∵∠BAC=70°,(已知)
∴∠AGD=110°.
23.如图,已知∠1=∠2,∠3+∠4=180°,证明AB∥EF.
【考点】平行线的判定.
【分析】根据∠1=∠2利用“同位角相等,两直线平行”可得出AB∥CD,再根据∠3+∠4=180°利用“同旁内角互补,两直线平行”可得出CD∥EF,从而即可证出结论.
【解答】证明:∵∠1=∠2,
∴AB∥CD.
∵∠3+∠4=180°,
∴CD∥EF.
∴AB∥EF.
24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求证:AB∥CD;
(2)求∠C的度数.
【考点】平行线的判定与性质.
【分析】(1)求出AE∥GF,求出∠2=∠A=∠1,根据平行线的判定推出即可;
(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,求出∠3,根据平行线的性质求出∠C即可.
【解答】(1)证明:∵AE⊥BC,FG⊥BC,
∴AE∥GF,
∴∠2=∠A,
∵∠1=∠2,
∴∠1=∠A,
∴AB∥CD;
(2)解:∵AB∥CD,
∴∠D+∠CBD+∠3=180°,
∵∠D=∠3+60°,∠CBD=70°,
∴∠3=25°,
∵AB∥CD,
∴∠C=∠3=25°.
柠柠2015
数学七年级下册期中考试试题(满分:100分;考试时间:100分钟)一、选择题(下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在相应括号内. 注意可以用各种不同的方法来解决你面前的选择题哦!2×12=24分)1、点(-7,0)在( )A、 轴正半轴上 B、 轴负半轴上 C、 轴正半轴上 D、 轴负半轴上 2、下列方程是二元一次方程的是( )A、 B、 C、 D、 3、已知点P位于 轴右侧,距 轴3个单位长度,位于 轴上方,距离 轴4个单位长度,则点P坐标是( )A、(-3,4) B、(4,3) C、(-4,3) D、(3,4)4、将下列长度的三条线段首尾顺次相接,能组成三角形的是( )A、4cm 3cm 5cm B、1cm 2cm 3cm C、25cm 12cm 11cm D、2cm 2cm 4cm5、二元一次方程组 的解是( )A、 B、 C、 D、6、用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A、正三角形 B、正方形 C、正五边形 D、正六边形7、已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角( )A、 一定有一个内角为45° B、一定有一个内角为60°C、一定是直角三角形 D、一定是钝角三角形8、如图,在4×4的正方形网格中,∠1、∠2、∠3的大小关系是( )A、∠1>∠2>∠3 B、∠1=∠2>∠3C、∠1<∠2=∠3 D、∠1=∠2=∠39、如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=( )A、 70° B、110° C、100° D、以上都不对10、如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( )A、∠A=∠C B、∠E=∠F C、AE‖FC D、AB‖DC第9题 第10题11、平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于( )A、1 B、2 C、3 D、412、若一个n 边形的所有内角与某个外角的和等于1350°,则n 为( )A、七 B、八 C、九 D、十二、填空题(开动你的脑筋, 将与题目条件有关的内容尽可能全面完整地填在答题卷相应的位置上. 大家都在为你加油啊!3×10=30分)13、剧院里5排2号可以用(5,2)表示,则7排4号用 表示。14、如果两个角是对顶角,且互补,则这两个角都是 角。15、△ABC中,若∠B=∠A+∠C,则△ABC是 三角形。16、在三角形已知两边的长分别为3cm和4cm,若第三边的长为偶数则第三边的长是 。17、若方程 2x + y = 是二元一次方程,则mn= 。18、每个外角都是36°的多边形的边数为 ,它的内角和为 。19、如图,已知AB‖CD,CM平分∠BCD,∠B=74°,CM⊥CN,则∠NCE的度数是 。20、已知如图,平行直线a、b被直线 所截,如果∠1=75°,则∠2= 。第19题 第20题21、写出一个解为 的二元一次方程组 。三、解答题(解答要求写出文字说明, 证明过程或计算步骤, 如果你觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以, 可不要有题目下面是空白的喔!共46分)22、解方程(8分)(1) (2) 23、作图题(6分)如图,在△ABC中,ÐBAC是钝角,画出:⑴ÐBAC的平分线AD;⑵AC边上的中线BE;⑶AB边上的高CF.24、(6分)某镇由于大力发展种植业和竹业加工业, 使农民今年的收入比去年多15%, 而支出比去年少10%. 已知去年收支相抵结余为400万元, 估计今年可结余860万元, 求去年的收入与支出各是多少万元?25、(5分)如图,直线AB‖CD,EF分别交AB、CD于点M、G,MN平分∠EMB,GH平分∠MGD,求证:MN‖GH。证明:∵AB‖CD(已知) ∴∠EMB=∠EGD( ) ∵MN平分∠EMB,GH平分∠MGD(已知) ∴∠1= ∠EMB,∠2= ∠MGD( ) ∴∠1=∠2 ∴MN‖GH( )26、(6分)如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95。(1)求∠DCA的度数(2)求∠DCE的度数。27、已知:如图,在△ABC中,∠BAC=900,AD⊥BC于D,AE平分∠DAC,∠B=500,求∠AEC的度数.(6分)28、(9分)在图所示的平面直角坐标系中表示下面各点A(0,3) B(1,-3) C(3,-5) D(-3,-5) E(3,5) F(5,7) (1)A点到原点O的距离是 。(2)将点C向 轴的负方向平移6个单位,它与点 重合。(3)连接CE,则直线CE与 轴是什么关系?(4)点F分别到 、 轴的距离是多少?
听雨蘑菇
七年级数学期中考试总是需要努力才能通过的,精神成就事业,态度决定一切。我整理了关于初一下册数学的期中试卷及参考答案,希望对大家有帮助! 初一下册数学期中试卷 一、选择题:每题3分,共30分 1.化简a23的结果为 2.下列分解因式中,结果正确的是 ﹣1=x﹣12 ﹣1=x+12 ﹣2=2x+1x﹣1 ﹣6x+9=xx﹣6+9 3.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是 A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠2 4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为 ° ° ° ° 5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是 ° ° ° ° 6.老师给出: , , 你能计算出 的值为 A、 B、 C、 D、 7.如果 , ,那么 三数的大小为 A. B. C. D. 8.如图,两个直角三角形重叠在一起,将其中一个三角形沿着BC边平移到△DEF的位置,∠B=90°,AB=10,DH=2,平移距离为3,则阴影部分的面积为 9.有一个两位数,它的十位数字与个位数字之和为6,则符合条件的两位数有 个 个 个 个 10.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是 二、填空题:每空3分,共30分 11.多项式2a2b3+6ab2的公因式是 . 12.人体红细胞的直径约为,用科学记数法表示为 . 13.一个三角形的两条边长度分别为1和4,则第三边a可取 .填一个满足条件的数 14.如图,在△ABC中,沿DE摺叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为 . 15. 如图,直线 1∥ 2,AB⊥ 1,垂足为O,BC与 2相交于点E,若∠1=43°,则∠2= . 16.如图,将一张长方形纸片沿EF摺叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1= °. 17. 一个多边形的每一个外角都是60°,则这个多边形是 边形,它的内角和是 °. 18.已知关于x、y的二元一次方程kx﹣2y=4的解是 ,则k=. 19. 用等腰直角三角板画 ,并将三角板沿 方向平移到如图所示的虚线处后绕点M逆时针方向旋转 ,则三角板的斜边与射线 的夹角 为 . 三、解答题本题共7题,共60分 20.计算:本题25分 1 ﹣2÷﹣ 0+﹣23; 22a﹣3b2﹣4aa﹣3b. 3分解因式:m4﹣2m2+1. 4解方程组 . 5先化简,再求值:4xx﹣1﹣2x+12x﹣1,其中x=﹣1. 21.画图并填空:本题6分 如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格. 1请在图中画出平移后的△A′B′C′; 2在图中画出△的A′B′C′的高C′D′标出点D′的位置; 3如果每个小正方形边长为1,则△A′B′C′的面积= .答案直接填在题中横线上 22.本题6分甲乙两人相距10千米,两人同时出发,同向而行,甲小时可以追上乙;相向而行,1小时相遇,求两人的速度. 23.本题6分如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数. 24.本题8分如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2, 1试判断DG与BC的位置关系,并说明理由. 2若∠A=70°,∠BCG=40°,求∠AGD的度数. 25.本题9分如图①是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线将大长方形剪成四个相同的小长方形,然后按图②的形状拼成一个正方形° 1请你观察图②,利用图形的面积写出三个代数式m+n2、m-n2、mn之间的等量关系式;______________. 2根据2中的结论,若x+y=-6,xy=,则x-y= . 3有许多代数恒等式都可以用图形的面积来表示,如图③,它表示2m+nm+n=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示代数恒等式m+n m+3n=m2+4mn+3n2. 初一下册数学期中试卷参考答案 一、选择题:每题3分,共30分 题号 1 2 3 4 5 6 7 8 9 10 答案 B C C C B D C C B C 二、填空题:每空2分,共33分 11. 2ab2 12. ×10﹣6 13. 4 14. 20° 15. 110° 16. 70° 17. 六 、 720 18. ﹣5 19. 22° 三、解答题本题共8题,共60分 20.计算:本题25分 1原式=9÷1+﹣8=9﹣8=1; 2原式=4a2﹣12ab+9b2﹣4a2+12ab=9b2. 3原式=m2﹣12=m+12m﹣12. 4解: , ①×2+②得:5x=0,即x=0, 把x=0代入①得:y=2, 则方程组的解为 . 5解:原式=4x2﹣4x﹣4x2+1=﹣4x+1, 当x=﹣1时,原式=4+1=5. 21.画图并填空:本题6分 解:12略 3△A′B′C′的面积= ×3×3= . 22.本题6分 解:设甲的速度为x千米/小时,乙的而速度为y千米/小时, 由题意得, , 解得: . 答:甲的速度为7千米/小时,乙的度数为3千米/小时. 23.本题6分 解:∵∠B=40°,∠C=60°, ∴∠BAC=180°﹣∠B﹣∠C=80°, ∵AE平分∠BAC, ∴∠BAE= ∠BAC=40°, ∴∠AEC=∠B+∠BAE=80°, ∵AD⊥BC, ∴∠ADE=90°, ∴∠DAE=180°﹣∠ADE﹣∠AED=10°. 答:∠DAE的度数是10°. 24.本题8分 解:1DG与BC平行.理由如下: ∵CD⊥AB,EF⊥AB, ∴CD∥EF, ∴∠1=∠BCD, ∵∠1=∠2, ∴∠2=∠BCD, ∴DG∥BC; 2∵DG∥BC, ∴∠AGD=∠BCG=40°. 25.本题9分 1m+n2=m-n2+4mn 2±5 3略
优质考试培训问答知识库