• 回答数

    5

  • 浏览数

    310

石小鱼苗
首页 > 考试培训 > 中招数学考试题型

5个回答 默认排序
  • 默认排序
  • 按时间排序

365033189次

已采纳

一、考基础知识,基本技能,纲本意识强。今年中考题将一如既往地采用基本题型微量的几何作图题,分值的分配大致是:代数占65%,几何点35%,其中填空选择题占70分上下,初三内容为考查的重难点,试题的覆盖率约占全卷的55%。日后,发给初三毕业班同学人手一册的《考纲说明》将有更详尽的标注,试题一般都是由易到难地编排。

无论哪种题型(大题)的中后期总要设计一两道尾巴高翘的“断梁”,下一大题又将重新从易到难,尤其是卷末的综合压轴题,激流险滩之中将呈现一派雄浑格调,是制卷者匠心独具的“戏眼”。所以整个试卷若是一条路,会有五虎挡道,若是一域水,会波澜起伏。但无论是对知识或能力的考查,都会较多地选择课本题,或根据课本题改编,紧扣教材,呈现考试的公平性。

二、考数学思想和方法,体现数学素养。

三、考查数学思想。重点考查四种数学思想:方程思想,分类讨论,数形结合及化归思想。由于函数是高中教学内容的核心,从初高中衔接角度考虑,会将函数作为重点内容考查,而且函数思想脉络中蕴含着极为丰富的数学思想内容,因此历来是各省中考题中“兵家必争之地”。

从三方面做好最后阶段的复习

1.理顺知识、查缺补漏。中考数学试题有60%—70%的题目是基础题,这些题目考查的内容一般是课本中基本概念、公式、法则、性质定理及基本运算、基本推理、基本作图、基本方法的应用及小综合应用,而且比较简单。同学们应对每一单元所包含的数学知识和数学思想方法形成清晰的网络,明确考点和常见题型。对模糊的知识点及时看书巩固,对掌握不熟练或易错的题型有针对性地重点练习。尤其是学习基础较差的同学,这一环节尤为重要,要争取基础题目不失分。这一环节可参考应试指南进行,对考点和题型进行了详细的归纳、总结、分析。

2.复习旧题、反思提高。数学知识和解题方法的应用是非常灵活的,在解题时如何运用数学知识、选取恰当的解题方法是同学们比较头疼的一个问题。有时一个题目会做了,但一换问法又不会了,原因是对题目没有理解透。实际上数学的学习和文科一样同样需要“积累”。在这么短的时间里再去做大量的题目,去钻难题,时间已经不允许,效果也不好。同学们可将以前做错或不会做的题目找出来再练一遍,在练的过程中注重反思解题的思维过程、探索过程和自己出错的原因、思维的断层。

3.模拟练习,适当调整。在最后的十天中,找2到3套去年的中考试题,模拟中考场景,进行适应性训练是很有必要的。从时间的安排、遇到难题时心态的调整,到答题的技巧等,通过模拟练习及时自我总结,适当调整,到中考时就不会那么紧张,也会应付自如了。

考试中应注意的几个问题

1.注意审题。因审题不清出现错误是中考失分的一大因素。数学题目的条件是非常严格的,若审题不清可能会出现漏解或错解。有的题目中有隐含条件,需要认真审题才能体会到,找到问题的突破口。还要注意看清答题要求,如近似数的精确度,只要求回答结果还是要给出证明等等,以免答非所问或画蛇添足。

2.注意由实际问题向数学模型的转化。中考数学试题中联系实际的问题约占十个左右,主要考查学生灵活运用知识解决实际问题的能力以及创新能力。对于此类题目首先要明确它要考查的知识点,需要调用哪些数学知识,再依据条件转化出数学模型,画出相应的图形。在解决问题的过程中还要注意所得答案要符合实际情况。

3.答题过程要规范,书写要整洁。这样便于老师阅卷,减少不必要的失分,也便于自己检查。中考阅卷是按步骤给分的,即使最后的结果错了,也会有步骤分,只有书写规范了才便于老师找到得分点。

4.合理安排时间。在中考中遇到不会做的题或一时想不出来的题目是很正常的,千万不要在一道题目上花费太多的时间,这样会影响后面试题的解答。最好的方法是先把熟悉的、会做的题目做完,再回过头来一一化解“拦路虎”。中考数学试题阅读量较大,若不能合理安排时间,很可能会做不完。

5.保持良好的心态,积极应考。良好的心态对理科考试尤为重要,也是思路顺畅的前提。过度紧张会导致思路不清,计算错误或做不出题。学会自我调控情绪,培养自信心,以积极的心态面对中考

中招数学考试题型

237 评论(9)

神经女大王

一、考基础知识,基本技能,纲本意识强。今年中考题将一如既往地采用基本题型微量的几何作图题,分值的分配大致是:代数占65%,几何点35%,其中填空选择题占70分上下,初三内容为考查的重难点,试题的覆盖率约占全卷的55%。日后,发给初三毕业班同学人手一册的《考纲说明》将有更详尽的标注,试题一般都是由易到难地编排。无论哪种题型(大题)的中后期总要设计一两道尾巴高翘的“断梁”,下一大题又将重新从易到难,尤其是卷末的综合压轴题,激流险滩之中将呈现一派雄浑格调,是制卷者匠心独具的“戏眼”。所以整个试卷若是一条路,会有五虎挡道,若是一域水,会波澜起伏。但无论是对知识或能力的考查,都会较多地选择课本题,或根据课本题改编,紧扣教材,呈现考试的公平性。 二、考数学思想和方法,体现数学素养。 三、考查数学思想。重点考查四种数学思想:方程思想,分类讨论,数形结合及化归思想。由于函数是高中教学内容的核心,从初高中衔接角度考虑,会将函数作为重点内容考查,而且函数思想脉络中蕴含着极为丰富的数学思想内容,因此历来是各省中考题中“兵家必争之地”。 从三方面做好最后阶段的复习1.理顺知识、查缺补漏。中考数学试题有60%—70%的题目是基础题,这些题目考查的内容一般是课本中基本概念、公式、法则、性质定理及基本运算、基本推理、基本作图、基本方法的应用及小综合应用,而且比较简单。同学们应对每一单元所包含的数学知识和数学思想方法形成清晰的网络,明确考点和常见题型。对模糊的知识点及时看书巩固,对掌握不熟练或易错的题型有针对性地重点练习。尤其是学习基础较差的同学,这一环节尤为重要,要争取基础题目不失分。这一环节可参考应试指南进行,对考点和题型进行了详细的归纳、总结、分析。2.复习旧题、反思提高。数学知识和解题方法的应用是非常灵活的,在解题时如何运用数学知识、选取恰当的解题方法是同学们比较头疼的一个问题。有时一个题目会做了,但一换问法又不会了,原因是对题目没有理解透。实际上数学的学习和文科一样同样需要“积累”。在这么短的时间里再去做大量的题目,去钻难题,时间已经不允许,效果也不好。同学们可将以前做错或不会做的题目找出来再练一遍,在练的过程中注重反思解题的思维过程、探索过程和自己出错的原因、思维的断层。3.模拟练习,适当调整。在最后的十天中,找2到3套去年的中考试题,模拟中考场景,进行适应性训练是很有必要的。从时间的安排、遇到难题时心态的调整,到答题的技巧等,通过模拟练习及时自我总结,适当调整,到中考时就不会那么紧张,也会应付自如了。考试中应注意的几个问题1.注意审题。因审题不清出现错误是中考失分的一大因素。数学题目的条件是非常严格的,若审题不清可能会出现漏解或错解。有的题目中有隐含条件,需要认真审题才能体会到,找到问题的突破口。还要注意看清答题要求,如近似数的精确度,只要求回答结果还是要给出证明等等,以免答非所问或画蛇添足。2.注意由实际问题向数学模型的转化。中考数学试题中联系实际的问题约占十个左右,主要考查学生灵活运用知识解决实际问题的能力以及创新能力。对于此类题目首先要明确它要考查的知识点,需要调用哪些数学知识,再依据条件转化出数学模型,画出相应的图形。在解决问题的过程中还要注意所得答案要符合实际情况。3.答题过程要规范,书写要整洁。这样便于老师阅卷,减少不必要的失分,也便于自己检查。中考阅卷是按步骤给分的,即使最后的结果错了,也会有步骤分,只有书写规范了才便于老师找到得分点。4.合理安排时间。在中考中遇到不会做的题或一时想不出来的题目是很正常的,千万不要在一道题目上花费太多的时间,这样会影响后面试题的解答。最好的方法是先把熟悉的、会做的题目做完,再回过头来一一化解“拦路虎”。中考数学试题阅读量较大,若不能合理安排时间,很可能会做不完。5.保持良好的心态,积极应考。良好的心态对理科考试尤为重要,也是思路顺畅的前提。过度紧张会导致思路不清,计算错误或做不出题。学会自我调控情绪,培养自信心,以积极的心态面对中考

156 评论(15)

小雨后哒晴天

我整理了一些中考数学的常考题型,大家一起来看看吧。

中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

1.平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。

2.将数据排序后,位置在最中间的数值.即将数据分成两部分,一部分大于该数值,一部分小于该数值.中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值

3.一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。用M表示。理性理解:简单的说,就是一组数据中占比例最多的那个数。

以上就是一些初中数学知识点的相关信息,供大家参考。

215 评论(12)

凌人happy

圆,二次根式,一元二次方程 ,分式

124 评论(15)

ellalikesyou

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

102 评论(8)

相关问答