• 回答数

    4

  • 浏览数

    275

wanguofang
首页 > 考试培训 > 线性代数期末考试试题及答案

4个回答 默认排序
  • 默认排序
  • 按时间排序

CATLION123

已采纳

《线性代数》期末复习试题8套含答案(大学期末复习资料).docx, PAGE PAGE 53 试题一 一、填充题(每小题3分,共15分) 1.多项式中的系数为_____. 2.设为3阶方阵,且,则_____. 3.当_____时,齐次线性方程组有非零解. 4.矩阵的秩为_____. 5 ..

线性代数期末考试试题及答案

95 评论(15)

陈宏立夏

(2)把第二行加到第三行,第三行都除以(1-λ)后把第三行的2倍、4倍分别加到第一、二行,得2-λ 4 0 32 9-λ 0 60 1 1 1,第一行都除以(2-λ)后把第一行的-2倍加到第二行,得1 4/(2-λ) 0 3/(2-λ)0 (10-11λ+λ^2)/(2-λ) 0 (6-6λ)/(2-λ)0 1 1 1,第二行都乘以(2-λ)/(10-11λ+λ^2)后把第二行的-4/(2-λ)倍,-1倍分别加到第一、三行得1 0 0 3/(10-λ)0 1 0 6/(10-λ)0 0 1 (4-λ)/(10-λ)。可以吗?

105 评论(13)

哈笑折腰

简单计算一下即可,答案如图所示

110 评论(12)

我是乾宝宝

A题(满分60分)一、填空题(每小题3分,共5小题,满分15分)1. 设A为4阶方阵,且|A|=2,则|2A-1|= 。2. 齐次线性方程组 只有零解,则 应满足的条件是 。3. 设B=(bij)3x3,则矩阵方程 的解X= 。4. 设A为n阶方阵,且秩(A)=n-1,则秩(A*)= 。5. 设n阶矩阵A的元素全为1,则A的n个特征值是 。二、选择题(每小题3分,共5小题,满分15分)1. 设A为n阶可逆矩阵, 是A的一个特征值,则A的伴随矩阵A*的特征值之一是( )。A). -1|A|n B). -1|A| C). |A| D). |A|n2.设有m个n维向量(m>n),则( )成立。A).必定线性相关 B).必定线性无关 C).不一定相关 D).无法判定3.若向量 线性无关, 线性相关,则( )。A). 必可由 线性表示 B). 必不可由 线性表示C). 必可由 线性表示 D). 必不可由 线性表示4.设n(n 3)阶矩阵A= ,如果A的秩为n-1,则a必为( )。A).1 B). C).-1 D).5.设Aij是n阶行列式D中元素aij的代数余子式,则( )成立。A).a11A11+ a12A12+ + a1nA1n=D B).a11A11+ a12A21+ + a1nAn1=DC).a11A11+ a12A12+ + a1nA1n=0 D).a11A11+ a12A21+ + a1nAn1=0三、计算题(每小题5分,共3小题,满分15分)1.Dn= 。2.设A= ,AB=A+2B,求B。3.解方程AX=b,已知(A b) 行初等变换 → 。四、(7分)设证明: 与 有相同的秩。五、(8分)a,b 取何值时,方程组无解?有惟一解?有无穷解?当无穷解时求其一般解。B题(满分40分)一、(8分)设A是n阶可逆方阵,将A的第i行和第j行对换后得到矩阵记为B。1).证明:B可逆2).求AB-1二、(8分)设A为n阶幂等阵,A2=A,则R(A)+R(E-A)=n三、(8分)设向量组1) 当a取何值时,该向量组的秩为3。2) 当a取上述值时,求出该向量组的一个极大线性无关组,并且将其它向量用该组线性表出。四、(8分)设3阶矩阵A的特征值为 对应的特征向量依次为,向量 ,1) 将 用 线性表出。2) 求An (n N)。五、(8分)用正交相似变换把下面二次型化为标准形:C题(满分20分)试卷说明:C题是线性代数应用部分试题,是试点型考生必做内容。本部分试题有五小题,每题4分,满分20分。一、(本题满分4分)某班有m个学生,分别记为1号,2号,…,m号,该班某学年开设有n门课程,第i号学生第j门课程得分为xij,体育得分为yi,政治表现得分为zi,嘉奖得分为di。xij, yi, zi均采用百分制。若学校规定三好考评与奖学金考评办法如下:三好考评按德、智、体分别占25%,60%,15%进行计算。德为政治表现,智为n门课程成绩得分均值,体为体育表现得分,再加嘉奖分。奖学金按课程得分乘以课程重要系数kj计算。试给出每位学生的两类考评得分的分数矩阵表达式综合表:二、(本题满分4分)农场的植物园中,某种植物的基因型为AA,Aa, aa,农场计划采用AA型植物与每种基因型植物相结合的方案培育植物后代,已知双亲体基因型与其后代基因型的概率。父体—母体基因型AA-AA AA- Aa AA-aa后代基因型 AA 1 1/2 0Aa 0 1/2 1Aa 0 0 0三、(本题满分4分)求函数f (x,y,z) = x2 +2 y2 +3z2 – 4xy + 4yz在附加条件:x2 + y2 +z2 =1下的最大值及最小值。四、(本题满分4分)已知二次型 = 的秩为2,求:1) 参数c及此二次型对应矩阵的特征值;2) 指出方程 表示何种二次曲面。五、(本题满分4分)结合你的专业或生活实际,举一个线性代数实用实例。D题(满分20分)试卷说明:D题是线性代数实验部分试题,是试点型考生必做内容。本部分试题有五小题,每题4分,满分20分。一、作图题(任选一)1、 作函数y=Sin[x y]的图形,其中2、 作函数 的图形,其中3、 自画一个三维图形。二、行列式的运算(任选一)1、计算行列式2、计算行列式B= 3、计算行列式C=4、自编一个大于或等于3阶的行列式并求其值。三、求矩阵的逆矩阵与伴随矩阵(任选一)1、已知(1)求A-1与A*(伴随矩阵)(2)求矩阵X使满足:AXC=T2、求下列方阵的逆阵与伴随矩阵(1) ; (2) 。3、自编一个大于或等于3阶的矩阵并求其逆阵与伴随矩阵四、求解线性方程组(任选一)1、 已知 ,计算A的秩及Ax=0的基础解系.2、 解方程组3、 求解线性方程组:4、 自编并求解一个大于或等于3个未知数的线性方程组。五、求矩阵的特征值与特征向量(任选一)1、求矩阵A= 的特征值和特征向量。2、求矩阵A= 的特征值和特征向量。3、自编一个大于或等于3阶的矩阵并求其特征值和特征向量。

325 评论(8)

相关问答