• 回答数

    2

  • 浏览数

    115

niuzhirong
首页 > 考试培训 > 九年级上册期末考试

2个回答 默认排序
  • 默认排序
  • 按时间排序

井中月2500

已采纳

对于九年级数学的复习,需要制定详细的计划,踏踏实实地做好数学期末试题,才能取得好成绩。以下是我为你整理的九年级上册期末考试数学题,希望对大家有帮助!

一、选择题(共8道小题,每小题4分,共32分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 的相反数是 ( )

A. C. D.

2.已知, 中,∠C=90°,sin∠A= ,则∠A 的度数是 ( )

° ° ° D. 90°

3.若反比例函数 的图象位于第二、四象限内,则 的取值范围是 ( )

A. B. C. D.

4.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为( ).

A. 8

5.如图,D是 边AB上一点,则下列四个条件不能单独判定 的是( )

A. B. C. D.

6.如图,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是 ( )

A. B. C. D.

7.如图,BC是⊙O的直径,A、D是⊙ 上两点,若∠D = 35°,则∠OAC的度数是 ( )

° ° ° °

8.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是 ( )

二、填空题(共4道小题,每小题4分,共16分)

9.如图,在△ABC中,DE∥BC,若DE=1,BC=3,那么△ 与△ 面积的比为 .

10.如图,点A、B、C是半径为3cm的⊙O上三个点,且 , 则劣弧 的长

是 .

11.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,

则∠AED的正弦值等于 .

12.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填

整数之和都相等,则第99个格子中的数为 ,2012个格子中的数为 .

3 a b c -1 2 …

三、解答题(本题共30分,每小题5分)

13.计算:

14.已知抛物线 .

(1)用配方法把 化为 形式;

(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,

抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.

15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.

解:

16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.

求cos∠C.

解:

17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.

解:

18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交AC于E,AC=8,BC=6.求DE的长.

解:

四、解答题(本题共20分,每小题5分)

19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,

此时小明正好站在A处,并测得 ,牵引底端 离地面米,

求此时风筝离地面的高度.

解:

20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).

甲超市.

球 两 红 一红一白 两 白

礼金券(元) 20 50 20

乙超市:

球 两 红 一红一白 两 白

礼金券(元) 50 20 50

(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;

(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.

解:

21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.

(1)求证: 是⊙O的切线;

(2)若 ,求 的长.

证明:

22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.

(1)求半圆O的半径;

(2)求图中阴影部分的面积.

解:

五、解答题(本题共22分,23题7分,24题7分,25题8分)

23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若

(1)求反比例函数和一次函数的解析式;

(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.

解:

24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,

旋转后的矩形记为矩形 .在旋转过程中,

(1)如图①,当点E在射线CB上时,E点坐标为 ;

(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);

(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.

(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.

图① 图② 图③

解:

25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).

(1)求此抛物线的解析式;

(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;

(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.

解:

一、选择题(共8道小题,每小题4分,共32分)

下面各题均有四个选项,其中只有一个是符合题意的.

题 号 1 2 3 4 5 6 7 8

答 案 D C B A C A B C

二、填空题(本题共16分,每小题4分)

题号 9 10 11 12

答案 π 2; -1

三、解答题(本题共30分,每小题5分)

13.计算:

解: 原式= …………………………4分

=

= ………………………………………………5分

14.已知抛物线 .

(1)用配方法把 化为 形式;

(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,

抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.

解(1)

=x2-2x+1-1-8

=(x-1)2 -9.………………………………………………3分

(2)抛物线的顶点坐标是 (1,-9)

抛物线的对称轴方程是 x=1 ……………………………4分

抛物线与x轴交点坐标是(-2,0)(4,0);

当x >1 时,y随x的增大而增大. ………………………………5分

15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.

解: 去括号,得 4x+4≤5x+8 ……………………………… 1分

移项、合并同类项,得-x≤4……………………………… 3分

系数化为1,得 ≥ ……………………………… 4分

不等式的解集在数轴上表示如下:

………………… 5分

16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.

求cos∠C.

解:方法一、作DE⊥BC,如图1所示,…………1分

∵AD∥BC,AB⊥BC,AB=AD=3,

∴四边形ABED是正方形.…………………2分

∴DE=BE=AB=3.

又∵BC=7,

∴EC=4,……………………………………3分

由勾股定理得CD=5.…………………………4分

∴ cos∠C= .…………………………5分

方法二、作AE∥CD,如图2所示,……………1分

∴∠1=∠C,

∵AD∥BC,

∴四边形AECD是平行四边形.………………2分

∵AB=AD=3,

∴EC=AD=3,

又∵BC=7,

∴BE=4,……………………………………3分

∵ AB⊥BC,由勾股定理得AE=5. ………………4分

∴ cos∠C= cos∠1= . …………………………5分

17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.

解:设抛物线的解析式为 , ………………………………………1分

抛物线过点A(3,0)和B(0,3). ∴ 解得 … ………4分

∴抛物线的解析式为 . ……………………………………5分

18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交 于 , .求DE的长.

解:在 中, ,

.…………………2分

又 ,

.

.

又 ,

.………………………………4分

.

………………………5分

四、解答题(本题共20分,每小题5分)

19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,

此时小明正好站在A处,并测得 ,牵引底端 离地面米,

求此时风筝离地面的高度.

解:依题意得, ,

∴四边形 是矩形 ,…………1分

……………2分

在 中, ……………3分

又∵ , ,

∴ .……………4分

.………………………………………5分

即此时风筝离地面的高度为 米 .

20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).

甲超市.

球 两 红 一红一白 两 白

礼金券(元) 20 50 20

乙超市:

球 两 红 一红一白 两 白

礼金券(元) 50 20 50

(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;

(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.

解:(1)树状图为:

…………2分

(2)∵去甲超市购物摸一次奖获50元礼金券的概率是P(甲)= = ,…………3分

去乙超市购物摸一次奖获50元礼金券的概率是P(乙)= = ……………………4分

∴我选择去甲超市购物……………………………………………………………………5分

21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.

(1)求证: 是⊙O的切线;

(2)若 ,求 的长.

(1)证明:连接 .

∵ , ,

. ……………………1分

∵ ,

. ……………………2分

又∵点 在⊙O上,

∴ 是⊙O的切线 .……………………3分

(2)∵直径 ,

. …………… 4分

在 中, ,

∴ ,

∵ ,

.……………………5分

22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.

(1)求半圆O的半径;

(2)求图中阴影部分的面积.

解:(1)解:连结OD,OC,

∵半圆与AC,BC分别相切于点D,E.

∴ ,且 .…………………1分

∵ ,

∴ 且O是AB的中点.

∴ .

∵ ,∴ .

∴ .

∴在 中, .

即半圆的半径为1. ……………………………………….3分

(2)设CO=x,则在 中,因为 ,所以AC=2x,由勾股定理得:

解得 ( 舍去)

∴ . …………………….4分

∵ 半圆的半径为1,

∴ 半圆的面积为 ,

∴ . ….…………………………….5分

五、解答题(本题共22分,23题7分,24题7分,25题8分)

23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若

(1)求反比例函数和一次函数的解析式;

(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.

解:作 轴于

∴ . ………………………………………1分

∵ 为 的中点,

∴ .

∴ .…………………………………3分

∴ . ∴A(4,2).

将A(4,2)代入 中,得 . . ……………4分

将 和 代入 得 解之得:

∴ .…………………………………………………………………5分

(2)在 轴的右侧,当 时, ………………………6分

当 < 时 >4. ……………………………………………………7分

24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,

旋转后的矩形记为矩形 .在旋转过程中,

(1)如图①,当点E在射线CB上时,E点坐标为 ;

(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);

(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.

(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.

图① 图② 图③

解:(1) (4, ) ………………………………………………1分

(2) …………………………………………………………………2分

(3)设 ,则 , ,

在Rt△ 中,∵ ,∴ ,

解得 ,即 .

∴ (4, ). …………………………………………………………4分

(4)设以点 为顶点的抛物线的解析式为 .

把 (0,6)代入得, .

解得, .

∴此抛物线的解析式为 .……………………………………6分

∵矩形 的对称中心为对角线 、 的交点 ,

∴由题意可知 的坐标为(7,2).

当 时, ,

∴点 不在此抛物线上. ………………………………………………7分

25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).

(1)求此抛物线的解析式;

(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;

(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.

解:(1)设抛物线为 .

∵抛物线经过点 (0,3),∴ .∴ .

∴抛物线为 . …………2分

(2) 答: 与⊙ 相交. ……………………………………3分

证明:当 时, , .

∴ 为(2,0), 为(6,0).

∴ .

设⊙ 与 相切于点 ,连接 ,

则 .

∵ ,∴∠ABO+∠CBE=90°.

又∵∠ABO+∠BAO=90°,

∴ .∴ ∽ .

∴ .∴ .∴ .…………4分

∵抛物线的对称轴 为 ,∴ 点到 的距离为2.

∴抛物线的对称轴 与⊙ 相交. …………………5分

(3) 解:如图,过点 作平行于 轴的直线交 于点 .

由点A(0,3)点C(6,0)可求出直线 的解析式为 .………………6分

设 点的坐标为( , ),则 点的坐标为( , ).

∴ .

∵ ,

∴当 时, 的面积最大为 .

此时, 点的坐标为(3, ). …………………8分

解答(3)的关键是作PQ∥y轴交AC于Q,以PQ为公共底,OC就是高,用抛物线、直线解析式表示P、Q两点的纵坐标,利用三角形的面积推导出面积与P点横坐标m的函数关系式,

即: .

评分说明:部分解答题有多种解法,以上各题只给出了部分解法,学生的其他解法可参照评分标准给分.

九年级上册期末考试

83 评论(10)

会舞蹈的兔子

在每一次数学期末考试结束后,要学会反思,这样对于九年级的数学知识才会掌握熟练。以下是我为你整理的九年级数学上册期末试题,希望对大家有帮助!

一、选择题(本题共32分,每小题4分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 经过点P( , )的双曲线的解析式是( )

A. B.

C. D.

2. 如图所示,在△ABC中,DE//BC分别交AB、AC于点D、E,

AE=1,EC=2,那么AD与AB的比为

A. 1:2 B. 1:3

C. 1:4 D. 1:9

3. 一个袋子中装有6个红球3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到红球的概率为

A. B. C. D.

4. 抛物线 的顶点坐标是

A. (-5,-2) B.

C. D. (-5,2)

5. △ABC在正方形网格纸中的位置如图所示,则 的值是

A. B.

C. D.

6. 要得到函数 的图象,应将函数 的图象

A.沿x 轴向左平移1个单位 B. 沿x 轴向右平移1个单位

C. 沿y 轴向上平移1个单位 D. 沿y 轴向下平移1个单位

7. 在平面直角坐标系中,如果⊙O是以原点为圆心,以10为半径的圆,那么点A(-6,8)

A. 在⊙O内 B. 在⊙O外

C. 在⊙O上 D. 不能确定

8.已知函数 (其中 )的图象如图所示,则函数 的图象可能正确的是

二、填空题(本题共16分,每小题4分)

9. 若 ,则锐角 = .

10. 如图所示,A、B、C为⊙O上的三个点, 若 ,

则∠AOB的度数为 .

11.如图所示,以点 为圆心的两个同心圆中,大圆的弦 是小圆的切线,

点 为切点,且 , ,连结 交小圆于点 ,

则扇形 的面积为 .

12. 如图所示,长为4 ,宽为3 的长方形木板在桌面上做

无滑动的翻滚(顺时针方向),木板上点A位置变化为 ,

由 此时长方形木板的边

与桌面成30°角,则点A翻滚到A2位置时所经过的路径总长度为 cm.

三、解答题(本题共30分,每小题5分)

13. 计算:

14. 已知:如图,在Rt△ABC中,

的正弦、余弦值.

15.已知二次函数 .

(1)在给定的直角坐标系中,画出这个函数图象的示意图;

(2)根据图象,写出当 时 的取值范围.

16. 已知:如图,AB是⊙O的弦,半径OC、OD分别交AB

于点E、F,且AE=BF.

求证:OE=OF

17.已知:如图,将正方形ABCD纸片折叠,使顶点A落在边CD上的

点P处(点P与C、D不重合),点B落在点Q处,折痕为EF,PQ与

BC交于点G.

求证:△PCG∽△EDP.

18.在一个不透明的口袋中装有白、黄两种颜色的乒乓球(除颜色外其余都相同),其中黄球有1个,白球有2个.第一次摸出一个球,做好记录后放回袋中,第二次再摸出一个球,请用列表或画树状图的方法求两次都摸到黄球的概率.

四、解答题(本题共20分,每小题5分)

19.已知:如图,在平面直角坐标系xoy中,直线 与

x轴交于点A,与双曲线 在第一象限内交于点B,

BC垂直x轴于点C,OC=2AO.求双曲线 的解析式.

20.已知:如图,一架直升飞机在距地面450米上空的P点,

测得A地的俯角为 ,B地的俯角为 (点P和AB所在

的直线在同一垂直平面上),求A、B两地间的距离.

21.作图题(要求用直尺和圆规作图,不写出作法,

只保留作图痕迹,不要求写出证明过程).

已知:圆.

求作:一条线段,使它把已知圆分成面积相等的两部分.

22.已知:如图,△ABC内接于⊙O,且AB=AC=13,BC=24,

PA∥BC,割线PBD过圆心,交⊙O于另一个点D,联结CD.

⑴求证:PA是⊙O的切线;

⑵求⊙O的半径及CD的长.

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)

23. 已知:在 中, ,点 为 边的中点,点 在 上,连结 并延长到点 ,使 ,点 在线段 上,且 .

(1)如图1,当 时,

求证: ;

(2)如图2,当 时,

则线段 之间的数量关系为;

(3)在(2)的条件下,延长 到 ,使 ,

连接 ,若 ,求 的值.

24.已知 均为整数,直线 与三条抛物线 和 交点的个数分别是2,1,0,若

25.已知二次函数 .

(1)求它的对称轴与 轴交点D的坐标;

(2)将该抛物线沿它的对称轴向上平移,如图所示,设平移后的抛物线的顶点为 ,与 轴、 轴的交点分别为A、B、C三点,连结AC、BC,若∠ACB=90°.

①求此时抛物线的解析式;

②以AB为直径作圆,试判断直线CM与此圆的位置关系,并说明理由.

阅卷须知:

1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

3.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

一、选择题(本题共32分,每小题4分)

题 号 1 2 3 4 5 6 7 8

答 案 B B D C A D C D

二、填空题(本题共16分,每小题4分)

题 号 9 10 11 12

答 案 60° 80°

三、解答题(本题共30分,每小题5分)

13. 解:原式 ………………………………………………………3分

…………………………………………………………5分

15.(1)示意图正确 ……………………………………………………………………3分

(2)当y < 0时,x的取值范围是x<-3或x>1; ……………………………5分

16. 证明:过点O作OM⊥AB于M ……………………………………1分

∴AM=BM ……………………………………3分

∵AE=BF,

∴EM=FM …………………………4分

∴OE= ……………………………………5分

18.解:

依题意,列表为:

黄 白 白

黄 (黄,黄) (黄,白) (黄,白)

白 (白,黄) (白,白) (白,白)

白 (白,黄) (白,白) (白,白)

由上表可知,共有9种结果,其中两次都摸到黄球的结果只有1种,

所以两次都摸到黄球的概率为 . …………………5分

四、解答题(本题共20分,每小题5分)

19.解:在 中,令y=0,得

.

解得 .

∴直线 与x轴的交点A的坐标为:(-1,0)

∴AO=1.

∵OC=2AO,

∴OC=2. …………………2分

∵BC⊥x轴于点C,

∴点B的横坐标为2.

∵点B在直线 上,

∴ .

∴点B的坐标为 . …………………4分

∵双曲线 过点B ,

∴ .

解得 .

∴双曲线的解析式为 . …………………5分

21.

AB为所求直线. ……………………5分

22.

证明:(1)联结OA、OC,设OA交BC于G.

∵AB=AC,

∴ AOB= AOC.

∵OB=OC,

∴OA⊥BC.

∴ OGB=90°

∵PA∥BC,

∴ OAP= OGB=90°

∴OA⊥PA.

∴PA是⊙O的切线. …………………2分

(2)∵AB=AC,OA⊥BC,BC=24

∴BG= BC=12.

∵AB=13,

∴AG= . …………………3分

设⊙O的半径为R,则OG=R-5.

在Rt△OBG中,∵ ,

.

解得,R= …………………4分

∴OG=.

∵BD是⊙O的直径,

∴O是BD中点,

∴OG是△BCD的中位线.

∴DC=2OG=. …………………5分

23.(1)证明:如图1连结

(2) …………………………………4分

(3)解:如图2

连结 ,

又 ,

.

为等边三角形………………………………..5分

在 中,

, ,

tan∠EAB的值为

25.解:(1)由

∴D(3,0) …………………………1分

(2)∵

∴顶点坐标

设抛物线向上平移h个单位,则得到 ,顶点坐标

∴平移后的抛物线:

……………………2分

当 时,

,

∴ A B ……………………3分

易证△AOC∽△COB

∴ OA•OB ……………………4分

∴ ,

∴平移后的抛物线: ………5分

(3)如图2, 由抛物线的解析式 可得

A(-2 ,0),B(8 ,0) C(0,4) , ……………………6分

过C、M作直线,连结CD,过M作MH垂直y轴于H,

在Rt△COD中,CD= =AD

∴点C在⊙D上 ……………………7分

∴△CDM是直角三角形,

∴CD⊥CM

∴直线CM与⊙D相切 …………………………………8分

说明:以上各题的其它解法只要正确,请参照本评分标准给分。

192 评论(11)

相关问答