蝴蝶圆舞曲
1.初一数学上册期中考试重点总结
图形的初步认识
一、立体图形与平面图形
1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线
1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角
1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。
五、余角和补角
1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线
1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:
⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
8、有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
七、平行线
1、在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3、如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、判定两条直线平行的方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
2.初一数学上册期中考试重点总结
函数
1、各个待定系数表示的的意义。
2、熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
3、利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
4、两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
5、利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
6、与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。
7、数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
8、自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
3.初一数学上册期中考试重点总结
【知识点】:
认识直线、线段与射线,会用字母正确读出直线、线段和射线。
直线:可以向两端无限延伸;没有端点。读作:直线AB或直线BA。
线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。
射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)
补充:
画直线。
过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。
明确两点之间的'距离,线段比曲线、折线要短。
直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。
4.初一数学上册期中考试重点总结
一、几何图形
几何学:数学中以空间形式为研究对象的分支叫做几何学。
从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。
1、几何图形的投影问题
每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。
2、立体图形的展开问题
将立体图形的表面适当剪开。
一、点、线、面、体
1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体。
2、点、线、面和体之间的关系
(1)点动成线、线动成面、面动成体;
(2)体是由面组成、面与面相交成线、线与线相交成点;
二、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;
②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,
也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;
③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;
2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。
(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;
②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;
③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;
5.初一数学上册期中考试重点总结
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。
二、整式
1、单项式:
(1)由数和字母的乘积组成的代数式叫做单项式。
(2)单项式中的数字因数叫做这个单项式的系数。
(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式
(1)几个单项式的和,叫做多项式。
(2)每个单项式叫做多项式的项。
(3)不含字母的项叫做常数项。
3、升幂排列与降幂排列
(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。
(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。
三、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:
(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤:
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:
(1)代数式化简
(2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
lichao7980
七年级数学期中考试总是需要努力才能通过的,精神成就事业,态度决定一切。我整理了关于初一下册数学的期中试卷及参考答案,希望对大家有帮助! 初一下册数学期中试卷 一、选择题:每题3分,共30分 1.化简a23的结果为 2.下列分解因式中,结果正确的是 ﹣1=x﹣12 ﹣1=x+12 ﹣2=2x+1x﹣1 ﹣6x+9=xx﹣6+9 3.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是 A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠2 4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为 ° ° ° ° 5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是 ° ° ° ° 6.老师给出: , , 你能计算出 的值为 A、 B、 C、 D、 7.如果 , ,那么 三数的大小为 A. B. C. D. 8.如图,两个直角三角形重叠在一起,将其中一个三角形沿着BC边平移到△DEF的位置,∠B=90°,AB=10,DH=2,平移距离为3,则阴影部分的面积为 9.有一个两位数,它的十位数字与个位数字之和为6,则符合条件的两位数有 个 个 个 个 10.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是 二、填空题:每空3分,共30分 11.多项式2a2b3+6ab2的公因式是 . 12.人体红细胞的直径约为,用科学记数法表示为 . 13.一个三角形的两条边长度分别为1和4,则第三边a可取 .填一个满足条件的数 14.如图,在△ABC中,沿DE摺叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为 . 15. 如图,直线 1∥ 2,AB⊥ 1,垂足为O,BC与 2相交于点E,若∠1=43°,则∠2= . 16.如图,将一张长方形纸片沿EF摺叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1= °. 17. 一个多边形的每一个外角都是60°,则这个多边形是 边形,它的内角和是 °. 18.已知关于x、y的二元一次方程kx﹣2y=4的解是 ,则k=. 19. 用等腰直角三角板画 ,并将三角板沿 方向平移到如图所示的虚线处后绕点M逆时针方向旋转 ,则三角板的斜边与射线 的夹角 为 . 三、解答题本题共7题,共60分 20.计算:本题25分 1 ﹣2÷﹣ 0+﹣23; 22a﹣3b2﹣4aa﹣3b. 3分解因式:m4﹣2m2+1. 4解方程组 . 5先化简,再求值:4xx﹣1﹣2x+12x﹣1,其中x=﹣1. 21.画图并填空:本题6分 如图,△ABC的顶点都在方格纸的格点上,将△ABC向下平移2倍,再向右平移3格. 1请在图中画出平移后的△A′B′C′; 2在图中画出△的A′B′C′的高C′D′标出点D′的位置; 3如果每个小正方形边长为1,则△A′B′C′的面积= .答案直接填在题中横线上 22.本题6分甲乙两人相距10千米,两人同时出发,同向而行,甲小时可以追上乙;相向而行,1小时相遇,求两人的速度. 23.本题6分如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数. 24.本题8分如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2, 1试判断DG与BC的位置关系,并说明理由. 2若∠A=70°,∠BCG=40°,求∠AGD的度数. 25.本题9分如图①是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线将大长方形剪成四个相同的小长方形,然后按图②的形状拼成一个正方形° 1请你观察图②,利用图形的面积写出三个代数式m+n2、m-n2、mn之间的等量关系式;______________. 2根据2中的结论,若x+y=-6,xy=,则x-y= . 3有许多代数恒等式都可以用图形的面积来表示,如图③,它表示2m+nm+n=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示代数恒等式m+n m+3n=m2+4mn+3n2. 初一下册数学期中试卷参考答案 一、选择题:每题3分,共30分 题号 1 2 3 4 5 6 7 8 9 10 答案 B C C C B D C C B C 二、填空题:每空2分,共33分 11. 2ab2 12. ×10﹣6 13. 4 14. 20° 15. 110° 16. 70° 17. 六 、 720 18. ﹣5 19. 22° 三、解答题本题共8题,共60分 20.计算:本题25分 1原式=9÷1+﹣8=9﹣8=1; 2原式=4a2﹣12ab+9b2﹣4a2+12ab=9b2. 3原式=m2﹣12=m+12m﹣12. 4解: , ①×2+②得:5x=0,即x=0, 把x=0代入①得:y=2, 则方程组的解为 . 5解:原式=4x2﹣4x﹣4x2+1=﹣4x+1, 当x=﹣1时,原式=4+1=5. 21.画图并填空:本题6分 解:12略 3△A′B′C′的面积= ×3×3= . 22.本题6分 解:设甲的速度为x千米/小时,乙的而速度为y千米/小时, 由题意得, , 解得: . 答:甲的速度为7千米/小时,乙的度数为3千米/小时. 23.本题6分 解:∵∠B=40°,∠C=60°, ∴∠BAC=180°﹣∠B﹣∠C=80°, ∵AE平分∠BAC, ∴∠BAE= ∠BAC=40°, ∴∠AEC=∠B+∠BAE=80°, ∵AD⊥BC, ∴∠ADE=90°, ∴∠DAE=180°﹣∠ADE﹣∠AED=10°. 答:∠DAE的度数是10°. 24.本题8分 解:1DG与BC平行.理由如下: ∵CD⊥AB,EF⊥AB, ∴CD∥EF, ∴∠1=∠BCD, ∵∠1=∠2, ∴∠2=∠BCD, ∴DG∥BC; 2∵DG∥BC, ∴∠AGD=∠BCG=40°. 25.本题9分 1m+n2=m-n2+4mn 2±5 3略