梦溪shuer
解:特征函数法设u(x,t)=∑T(t)sin(nπx/l),n=1..∞代入范定方程及初值条件有∑[T'(t)+(nπa/l)²T(t)]sin(nπx/l)=2sin(2x/l)u(x,t)=∑T(0)sin(nπx/l)=0,得T(0)=0利用函数系{sin(nπx/l)|n=0..n}在(0,l)上的正交性有T'(t)+(nπa/l)²T(t)=(4/l)∫(0~l)sin(nπx/l)sin(2x/l)dx =(-1)^n(4nπsin2)/[4-(nπ)²]=q(n)(记)则T(t)=exp[-(nπa/l)²t]∫(0~t)q(n)exp[(nπa/l)²t]dt =(l/nπa)²q(n){1-exp[-(nπa/l)²t]}定解u(x,t)=∑T(t)sin(nπx/l) =∑(l/nπa)²q(n){1-exp[-(nπa/l)²t]}sin(nπx/l),n=1..∞
优质考试培训问答知识库