• 回答数

    2

  • 浏览数

    117

注定孤独终X
首页 > 考试培训 > 七年级数学考试题

2个回答 默认排序
  • 默认排序
  • 按时间排序

xiaohoulee

已采纳

一、填空题:

1. 的算术平方根是.

2.如图,点A,B,C在一条直线上,已知1=53,2=37,则CD与CE的位置关系是.

3.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.设甲数为x,乙数为y,由题意可得方程组.

4.当a0时,不等式组 的解集是.

5.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B (a,2),则a=.

6.某校为了解学生喜爱的体育活动项目,随机抽查了100名学生,让每人选一项自己喜欢的项目,并制成如图所示的扇形图.那么喜爱跳绳的学生有人.

7.已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A,则A的坐标为.

8.请构造一个二元一次方程组,使它的解为 .这个方程组是.

9.如图,已知a‖b,小亮把三角板的直角顶点放在直线b上.若1=40,则2的度数为.

10.如图,用同样规格的黑、白两色正方形瓷砖铺设地面,请观察图形回答问题:第n个图形中需用黑色瓷砖块.(用含n的代数式表示)

二、选择题:(请将正确答案的代号填在题后的括号内,每小题3分,共分30分)

11.下列运算正确的是()

A. B.(-3)2=-9

12.若点P(1-m,m)在第二象限,则下列关系式正确的是()

13.下列各方程组中,属于二元一次方程组的是()

A. B.

C. D.

14.若 =(x+y)2,则x-y的值为()

15.某校对七年级的300名学生数学考试做一次调查,在某范围内的得分情况如图所示的扇形图,则在75分以下这一分数段中的人数为()

人 人 人 人

16.如图,已知3=4,要得到AB‖CD,需要添加的条件是()

与2互补

17.在x=-4,-1,0,3中,满足不等式组 的x值是()

和0 和-1 和3 和0

18.△DEF(三角形)是由△ABC平移得到的,点A(-1,-4)的对应点为D(1,-1),则点B(1,1)的对应点E,点C(-1,4)的对应点F的坐标分别为()

A.(2,2),(3,4) B.(3,4),(1,7) C.(-2,2),(1,7) D.(3,4),(2,-2)

19.已知 ,则xy的值是()

20.已知三条不同的直线a,b,c在同一平面内,下列四个命题:

①如果a‖b,ac,那么bc;

②如果b‖a,c‖a,那么b‖c;

③如果ba,ca,那么bc;

④如果ba,ca,那么b‖c.

其中是真命题的是()

A.①②③ B.①② C.①②④ D.①③

三、解答题(共66分)

19.(8分)计算:

(1)4-38+3-127;

解:原式=2-2+(-13)=-13.

(2)2(2-3)+|2-3|.

解:原式=22-23+3-2=2-3.

20.(8分)(1)解方程组:2x+5y=25,①4x+3y=15;② (2)解不等式:2x-13-1≤5x+12.

解:①×2,得4x+10y=50.③ 解:去分母,得2(2x-1)-6≤3(5x+1).

③-②,得7y=35,解得y=5. 去括号,得4x-2-6≤15x+3.

将y=5代入①,得x=0. 移项,得4x-15x≤3+2+6.

∴原方程组的解是x=0,y=5. 合并,得-11x≤11.

系数化为1,得x≥-1.

21.(6分)已知:如图所示的网格中,三角形ABC的顶点A(0,5),B(-2,2).

(1)根据A,B坐标在网格中建立平面直角坐标系,并写出点C坐标(2,3);

(2)平移三角形ABC,使点C移动到点F(7,-4),画出平移后的'三角形DEF,其中点D与点A对应,点E与点B对应.

解:如图.

22.(6分)苹果熟了,一个苹果从树上被抛下.如图所示,从A处落到了B处.(网格单位长度为1)

(1)写出A,B两点的坐标;

(2)苹果由A处落到B处,可看作由哪两次平移得到的?

解:(1)A(2,4),B(-1,-2).

(2)先向左平移3个单位长度,再向下平移6个单位长度.(或先向下平移6个单位长度,再向左平移3个单位长度)

23.(8分)如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.

(1)AD与BC平行吗?试写出推理过程;

(2)求∠DAC和∠EAD的度数.

解:(1)AD与BC平行.

∵AC平分∠BCD,∠ACB=40°,∴∠BCD=2∠ACB=80°.

又∵∠D=100°,∴∠BCD+∠D=80°+100°=180°.∴AD‖BC.

(2)由(1)知AD‖BC,∴∠DAC=∠ACB=40°.

∵∠BAC=70°,∴∠B=70°.

∴∠EAD=∠B=70°.

24.(8分)在一次“献爱心手拉手”捐款活动中,某数学兴趣小组对学校所在社区部分捐款户数进行调查和分组统计,将数据整理成以下统计表和统计图(信息不完整),已知A,B两组捐款户数的比为1∶5.

捐款户数分组统计表,

组别 捐款数(x)元 户数

A 1≤x<100 a

B 100≤x<200 10

C 200≤x<300 20

D 300≤x<400 14

E x≥400 4

)

请结合以上信息解答下列问题:

(1)a=2.本次调查的样本容量是50;

(2)补全捐款户数统计表和统计图;

(3)若该社区有600户居民,根据以上信息估计全社区捐款不少于300元的户数是多少?

解:(2)补全捐款户数统计图如图:

(3)600×(28%+8%)=600×36%=216(户).

答:不少于300元的有216户.

25.(10分)(株洲中考)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.

(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?

(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?

(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?

解:(1)设孔明同学测试成绩为x分,平时成绩为y分,由题意,得

x+y=185,80%x+20%y=91.解得x=90,y=95.

答:孔明同学测试成绩为90分,平时成绩为95分.

(2)不可能.由题意可得:80-70×80%=24,24÷20%=120>100,故不可能.

(3)设平时成绩为满分,即100分,综合成绩为100×20%=20.

设测试成绩为a分,根据题意,可得

20+80%a≥80,解得a≥75.

答:他的测试成绩应该至少为75分.

26.(12分)如图1,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.

(1)写出点C,D的坐标并求出四边形ABDC的面积;

(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由;

(3)如图2,点P是直线BD上一个动点,连接PC,PO,当点P在直线BD上运动时,请直接写出∠OPC与∠PCD,∠POB的数量关系.

解:(1)C(0,2),D(4,2).

S四边形ABDC=AB•OC=4×2=8.

(2)存在,当BF=12CD时,三角形DFC的面积是三角形DFB面积的2倍.

∵C(0,2),D(4,2),

∴CD=4,BF= CD=2.

∵B(3,0),

∴F(1,0)或(5,0).

(3)当点P在线段BD上运动时:∠OPC=∠PCD+∠POB;

当点P在BD延长线上运动时:∠OPC=∠POB-∠PCD;

当点P在DB延长线上运动时:∠OPC=∠PCD-∠POB.

七年级数学考试题

95 评论(11)

κiξs飛揚

摆正身心,价值千金,成绩好坏,不足为怪,只要努力,无愧天地!祝你七年级数学期末考试取得好成绩,期待你的成功!下面是我为大家精心整理的七年级人教版下册数学期末考试题,仅供参考。

一、选择题(共8小题,每小题3分,满分24分)

1.在数轴上表示不等式2x﹣4>0的解集,正确的是()

A. B. C. D.

2.如果 是二元一次方程2x﹣y=3的解,则m=()

B.﹣1

3.若a>b,则下列不等式中,不成立的是()

>b+5 ﹣5>b﹣5 >5b D.﹣5a>﹣5b

4.下列长度的各组线段首尾相接能构成三角形的是()

、5cm、8cm 、5cm、6cm 、3cm、6cm 、5cm、10cm

5.商店出售下列形状的地砖:

①长方形;②正方形;③正五边形;④正六边形.

若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()

种 种 种 种

6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()

° ° ° °

7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()

个 个 个 个

8.已知关于x的不等式组 无解,则a的取值范围是()

≤2 ≥2 <2 >2

二、填空题(共7小题,每小题3分,满分21分)

9.若 是方程x﹣ay=1的解,则a=.

10.不等式3x﹣9<0的最大整数解是.

11.列不等式表示:“2x与1的和不大于零”:.

12.将方程2x+y=6写成用含x的代数式表示y,则y=.

13.等腰三角形的两边长分别为9cm和4cm,则它的周长为.

14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是.

15.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.

三、解答题(共9小题,满分75分)

16.(1)解方程: ﹣ =1;

(2)解方程组: .

17.解不等式组,并在数轴上表示它的解集.

.

为何值时,代数式﹣ 的值比代数式 ﹣3的值大3.

19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.

20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.

(1)填空:∠AFC=度;

(2)求∠EDF的度数.

21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.

22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;

(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.

23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)

(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;

(2)在DE上画出点P,使PB1+PC最小.

24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

一、选择题(共8小题,每小题3分,满分24分)

1.在数轴上表示不等式2x﹣4>0的解集,正确的是()

A. B. C. D.

【考点】解一元一次不等式;在数轴上表示不等式的解集.

【分析】将不等式的解集在数轴上表示出来就可判定答案了.

【解答】解:不等式的解集为:x>2,

故选A

2.如果 是二元一次方程2x﹣y=3的解,则m=()

B.﹣1

【考点】二元一次方程的解.

【分析】本题将 代入二元一次方程2x﹣y=3,解出即可.

【解答】解:∵ 是二元一次方程2x﹣y=3的解,

∴2﹣m=3,

解得m=﹣1.

故选B.

3.若a>b,则下列不等式中,不成立的是()

>b+5 ﹣5>b﹣5 >5b D.﹣5a>﹣5b

【考点】不等式的性质.

【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.

【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;

C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;

D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;

故选:D.

4.下列长度的各组线段首尾相接能构成三角形的是()

、5cm、8cm 、5cm、6cm 、3cm、6cm 、5cm、10cm

【考点】三角形三边关系.

【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.

【解答】解:根据三角形的三边关系,得:

A、3+5=8,排除;

B、3+5>6,正确;

C、3+3=6,排除;

D、3+5<10,排除.

故选B.

5.商店出售下列形状的地砖:

①长方形;②正方形;③正五边形;④正六边形.

若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()

种 种 种 种

【考点】平面镶嵌(密铺).

【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.

【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;

②正方形的每个内角是90°,4个能组成镶嵌;

③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;

④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;

故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.

故选C.

6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于()

° ° ° °

【考点】矩形的性质;翻折变换(折叠问题).

【分析】根据折叠的性质求∠EAD′,再在Rt△EAD′中求∠AED′.

【解答】解:根据题意得:∠DAE=∠EAD′,∠D=∠D′=90°.

∵∠BAD′=30°,

∴∠EAD′= (90°﹣30°)=30°.

∴∠AED′=90°﹣30°=60°.

故选C.

7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()

个 个 个 个

【考点】勾股定理的逆定理;三角形内角和定理.

【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.

【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;

②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;

③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;

④因为∠A=∠B=∠C,所以三角形为等边三角形.

所以能确定△ABC是直角三角形的有①②③共3个.

故选:C.

8.已知关于x的不等式组 无解,则a的取值范围是()

≤2 ≥2 <2 >2

【考点】解一元一次不等式组.

【分析】根据不等式组无解的条件即可求出a的取值范围.

【解答】解:由于不等式组 无解,

根据“大大小小则无解”原则,

a≥2.

故选B.

二、填空题(共7小题,每小题3分,满分21分)

9.若 是方程x﹣ay=1的解,则a=1.

【考点】二元一次方程的解.

【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出a的值.

【解答】解:把 代入方程x﹣ay=1,

得3﹣2a=1,

解得a=1.

故答案为1.

10.不等式3x﹣9<0的最大整数解是2.

【考点】一元一次不等式的整数解.

【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.

【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.

故答案为2.

11.列不等式表示:“2x与1的和不大于零”:2x+1≤0.

【考点】由实际问题抽象出一元一次不等式.

【分析】理解:不大于的意思是小于或等于.

【解答】解:根据题意,得2x+1≤0.

12.将方程2x+y=6写成用含x的代数式表示y,则y=6﹣2x.

【考点】解二元一次方程.

【分析】要用含x的代数式表示y,就要把方程中含有y的项移到方程的左边,其它的项移到方程的另一边.

【解答】解:移项,得y=6﹣2x.

故填:6﹣2x.

13.等腰三角形的两边长分别为9cm和4cm,则它的周长为22cm.

【考点】等腰三角形的性质;三角形三边关系.

【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.

【解答】解:∵等腰三角形的两条边长分别为9cm,4cm,

∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,

∴等腰三角形的周长=9+9+4=22.

故答案为:22cm.

14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是﹣5

【考点】三角形三边关系;解一元一次不等式组.

【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.

【解答】解:8﹣3<1﹣2m<3+8,

即5<1﹣2m<11,

解得:﹣5

故答案为:﹣5

15.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19cm.

【考点】线段垂直平分线的性质.

【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.

【解答】解:∵△ABC中,DE是AC的中垂线,

∴AD=CD,AE=CE= AC=3cm,

∴△ABD得周长=AB+AD+BD=AB+BC=13 ①

则△ABC的周长为AB+BC+AC=AB+BC+6 ②

把②代入①得△ABC的周长=13+6=19cm

故答案为:19.

三、解答题(共9小题,满分75分)

16.(1)解方程: ﹣ =1;

(2)解方程组: .

【考点】解二元一次方程组;解一元一次方程.

【分析】(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.

(2)应用加减消元法,求出二元一次方程组的解是多少即可.

【解答】解:(1)去分母,可得:2(x﹣1)﹣(x+2)=6,

去括号,可得:2x﹣2﹣x﹣2=6,

移项,合并同类项,可得:x=10,

∴原方程的解是:x=10.

(2)

(1)+(2)×3,可得7x=14,

解得x=2,

把x=2代入(1),可得y=﹣1,

∴方程组的解为: .

17.解不等式组,并在数轴上表示它的解集.

.

【考点】解一元一次不等式组;在数轴上表示不等式的解集.

【分析】分别求出每一个不等式的解集,根据口诀“同小取小”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.

【解答】解:解不等式 >x﹣1,得:x<4,

解不等式4(x﹣1)<3x﹣4,得:x<0,

∴不等式组的解集为x<0,

将不等式解集表示在数轴上如下:

为何值时,代数式﹣ 的值比代数式 ﹣3的值大3.

【考点】解一元一次方程.

【分析】根据题意列出一元一次方程,解方程即可解答.

【解答】解:由题意得:

﹣9(x+1)=2(x+1)

﹣9x﹣9=2x+2

﹣11x=11

x=﹣1.

19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.

【考点】三角形的外角性质;三角形内角和定理.

【分析】要求∠B的度数,可先求出∠C=70°,再根据三角形内角和定理求出∠BAC+∠B=110°最后由三角形的外角与内角的关系可求∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,即∠B=50°.

【解答】解:∵AE⊥BC,∠EAC=20°,

∴∠C=70°,

∴∠BAC+∠B=110°.

∵∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,

∴∠B=50°.

20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.

(1)填空:∠AFC=110度;

(2)求∠EDF的度数.

【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).

【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;

(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.

【解答】解:(1)∵△ABD沿AD折叠得到△AED,

∴∠BAD=∠DAF,

∵∠B=50°∠BAD=30°,

∴∠AFC=∠B+∠BAD+∠DAF=110°;

故答案为110.

(2)∵∠B=50°,∠BAD=30°,

∴∠ADB=180°﹣50°﹣30°=100°,

∵△ABD沿AD折叠得到△AED,

∴∠ADE=∠ADB=100°,

∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.

21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.

【考点】多边形内角与外角.

【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是45度,内角是135度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.

【解答】解:每一个外角的度数是180÷4=45度,

360÷45=8,

则多边形是八边形.

22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;

(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.

【考点】规律型:图形的变化类;轴对称图形;旋转的性质.

【分析】(1)从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.

(2)如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.

【解答】解:(1)如图:

(2)

23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)

(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;

(2)在DE上画出点P,使PB1+PC最小.

【考点】作图-轴对称变换;轴对称-最短路线问题.

【分析】(1)根据网格结构找出点A、B、C关于直线DE的对称点A1、B1、C1的位置,然后顺次连接即可;

(2)根据轴对称确定最短路线问题,连接BC1,与直线DE的交点即为所求的点P.

【解答】解:(1)△A1B1C1如图所示;

(2)点P如图所示.

24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.

(1)求A、B型号衣服进价各是多少元?

(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.

【考点】一元一次不等式组的应用;二元一次方程组的应用.

【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;

(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.

【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,

则: ,

解之得 .

答:A种型号的衣服每件90元,B种型号的衣服100元;

(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,

可得: ,

解之得 ,

∵m为正整数,

∴m=10、11、12,2m+4=24、26、28.

答:有三种进货方案:

(1)B型号衣服购买10件,A型号衣服购进24件;

(2)B型号衣服购买11件,A型号衣服购进26件;

(3)B型号衣服购买12件,A型号衣服购进28件.

253 评论(12)

相关问答