• 回答数

    5

  • 浏览数

    187

九尾小妖
首页 > 考试培训 > 初一期中考试卷数学

5个回答 默认排序
  • 默认排序
  • 按时间排序

Z黑暗中獨舞

已采纳

七年级(下)数学期中复习测试题\x0d\x0a一.精心选一选(每小题只有一个正确答案,每题3分,共30分)\x0d\x0a1.下列说法正确的有()个。\x0d\x0a(1)相等的角是对顶角;(2)过一点有且只有一条直线与己知直线平行;(3)垂直于同一条直线的两条直线互相平行;(4)两直线被第三条直线所截,同位角相等;(A)0个(B)1个(C)2个(D)3个\x0d\x0a2.一条河流两次拐湾后的流向不变,那么两次拐湾的角度可能是()\x0d\x0a(A)第一次右拐50度,第二次左拐130度;\x0d\x0a(B)第一次左拐50度,第二次左拐130度;\x0d\x0a(C)第一次右拐50度,第二次右拐50度;\x0d\x0a(D)第一次左拐50度,第二次右拐50度\x0d\x0a3.如右图,不能判定AB‖CD的条件是()\x0d\x0a(A)∠B+∠BCD=1800;(B)∠1=∠2;(C)∠3=∠4;(D)∠B=∠5.\x0d\x0a4.已知∠A与∠B互余,∠B与∠C互补,若∠A=50°,则∠C的度数是()\x0d\x0a(A)40°(B)50°(C)130°(D)140°\x0d\x0a5.下列各式中,不能用平方差公式计算的是()\x0d\x0a(A)(B)\x0d\x0a(C)(D)\x0d\x0a6.已知是完全平方式,则k的值为()\x0d\x0a(A)6(B)(C)-6(D)\x0d\x0a7.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()\x0d\x0a(A)(B)(C)(D)\x0d\x0a\x0d\x0a8.下列说法中,正确的是()\x0d\x0a(A)近似数与近似数5的精确度相同。\x0d\x0a(B)近似数精确到千分位,有四个有效数字。\x0d\x0a(C)近似数5千和近似数5000精确度相同。\x0d\x0a(D)近似数与近似数23的有效数字都是2,3。\x0d\x0a\x0d\x0a9.如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=()\x0d\x0a(A)70°(B)110°(C)100°(D)80°\x0d\x0a\x0d\x0a10.如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,\x0d\x0a∠MNB=115°,则下列结论正确的是()\x0d\x0a(A)∠A=∠C(B)∠E=∠F(C)AE‖FC(D)AB‖DC\x0d\x0a\x0d\x0a二.用心填一填(每题3分,共15分)\x0d\名学生计划“五一”这天去郊游,任选其中的一人带20根香肠,则10人中的小亮被选中的概率是_________.\x0d\x0a12.如图所表示的数学公式是12题b\x0d\x0a\x0d\x0a13.如图(3),折叠宽度相等的长方形纸条,若∠1=620,则∠2=_______度\x0d\x0a\x0d\x0a14.如图,AB⊥AC,AD⊥AE则图中互余的角有_______对.\x0d\x0aCE\x0d\x0a\x0d\x0aD\x0d\x0a\x0d\x0aBAF\x0d\x0a15.如图,用黑白两种颜色的正六边形地面砖按如下规律拼成若干个图案,那么第n个图案中的白色地面砖有________块.\x0d\x0a\x0d\x0a三.仔细做一做(共55分)\x0d\x0a16.(5分)某商店举办有奖销售活动,购物满100元者发对奖券一张。在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。若某人购物刚好满100元,分别求此人中特等奖,一等奖,二等奖以及中奖的概率各是多少。\x0d\x0a\x0d\x0a17.(5分)\x0d\x0a\x0d\x0a18.(6分)已知x=,y=-1,求的值\x0d\x0a\x0d\x0a19.(6分)下列事件中,哪些是不确定事件,哪些是必然事件,哪些是不可能事件?\x0d\x0a(1)在标准大气压下,温度达到100C时水会沸腾;(2)没有水分,种子发芽;(3)从一个班级中任意抽取5人,结果这5人都是男生;(4)明天本市有雨;(5)打开电视机,正在播新闻联播;(6)一个正数的相反数是它本身\x0d\x0a答:不确定事件有:必然事件有:\x0d\x0a\x0d\x0a不可能事件有:\x0d\x0a\x0d\x0a20.如图,a‖b,b‖c,写出图中各个角之间的等量关系。(只写结论,写对一个得一分,最多得8分)\x0d\x0a\x0d\x0a21.(8分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.(请为每一步推理注明依据)\x0d\x0a结论:∠A与∠3相等,理由如下:\x0d\x0a\x0d\x0a∵DE⊥BC,AB⊥BC(已知)\x0d\x0a∴∠DEC=∠ABC=90°()\x0d\x0a\x0d\x0a∴DE‖BC()\x0d\x0a\x0d\x0a∴∠1=∠A()\x0d\x0a由DE‖BC还可得到:\x0d\x0a∠2=∠3()\x0d\x0a又∵∠l=∠2(已知)\x0d\x0a∴∠A=∠3(等量代换)\x0d\x0a\x0d\x0a22.(8分)一只不透明的袋子中,装有2个白球和1个红球,这些球除颜色外者都相同。\x0d\x0a(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此模出白球和模出红球是等可能的。你同意他的说法吗?为什么?\x0d\x0a(2)搅均后从中摸出一个球,请求出不是白球的概率;\x0d\x0a(3)搅均后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?

初一期中考试卷数学

129 评论(9)

糖纸0035

题目呢。怎么没有看到题目。

84 评论(9)

咩丝忒酷

初一数学期中考试试题姓名: 班级:一、 选择题(每题3分,共30分) 1、若规定向东走为正,那么-8米表示( ) A、向东走8米 B、向南走8米 C、向西走8米 D、向北走8米2、代数式(a-b)2/c的意义是( ) A、a与b的差的平方除c B、a与b的平方的差除c C、a与b的差的平方除以c D、a与b 的平方的差除以c3、零是( )A、正数 B、奇数 C、负数 D、偶数4、在一个数的前面加上一个“—”号,就可以得到一个( )A、负数 B、一个任何数 C、原数的相反数 D、非正数5、如果ab=0,那么一定有( )A、a=b=0 B a=0 C a,b至少有一个为0 D a,b至少有一个为06、在下列各数中是负数的是( ) A、-(-1/2) B -|-1/3|C –[+(-1/5)] D |-1/6|7、下面说法中正确是的有( )(1)一个数与它的绝对值的和一定不是负数。(2)一个数减去它的相反数,它们的差是原数的2倍(3)零减去一个数一定是负数。(4)正数减负数一定是负数。(5)有理数相加减,结果一定还是有理数。 A、2个 B、3个 C、4个 D、5个8、下列各数成立的是( )A、—()=+(+1/5) B、(-3)+(+3)=6C、+(-1)= —(-1) D、-[+(-7)]=+[-(+7)]9、下列说法中,正确的是( )A、存在最小的有理数 B、存在最大负整数C、存在最大的负整数 D、存在最小的整数10、如果一个数a的绝对值除a的商是-1,那么a一定是( )A、-1 B、1或-1 C、负数 D、正数二、 填空题。(每题3分,共30分)11、教室里有学生a人,走了b 人,又进来了C人,此时教室进而有学生( )人。12、已知两数的积为36,若其中一个数为m,则这两个数的和为( )13、当x=( )时,代数式(x-4)/3的值等于0。14、气温从a。C下降后是( )15、设甲数为x,乙数为 y,则“甲乙两数的积减去甲乙两数的差”可以表示为( )16、如果a>0,那么| a |= ( )17、1293400000用科学记数法表示为( ),89765的有效数字是( ),如果把它保留到两个有效数字是( )。18、比-3小5的数是( )三、 计算题。(每题4 分,共计16分)(19) {[12+4(3-10)]}/5 (20)[(-3)3-(-5)3]/[(-3)-(-5)](21)(-2)3*5-()/(-2)2 (22)(1/4+1/6-1/2)*48四、解答题。(每题6分,共24分)23、已知| a |=5,|b| =3,且a,b异号,求代数式(a+b)(a-b)的值。24、在数轴上表示绝对值不大于5的所有整数。25、现在5袋小麦重依次为183千克,176千克,185千克,178千克,181千克为准。超过的斤数记为正数,不足的斤数记为负数,那么这5袋小麦与标准重量相比,超出或不足千克数依次为多少?这5袋小麦总重量为多少克?26、学校利用假期组织学生参加一段时间的勤工俭学活动,每个学生得到15元补助,在活动期间有的同学买了份饭,饭费应从15元内扣除,饭费与同学实际领到的钱数如下表:(1) 写出用n表示c的公式(n小于或等于25的自然数)(2) 计算当n=6时, c是多少?饭费的数量n 饭费如下(元 领钱数c(元1 0.60元 1.20元 1.80元 2.40元 ……… ……… ………四、 附加题。(20分)1、互为相反数,c ,d互为倒数,且|m|=3,求:m+cd-(a+b)/(a+b+c)的值。

219 评论(9)

丹儿你个丹儿

数学期中考试就到了,不要因为暂时的困难而放弃曾经的目标,我相信初一数学期中考试你一定能考出高分数。以下是我为你整理的初一数学下册期中试题,希望对大家有帮助!

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.下列各图中,∠1与∠2互为余角的是()

2.下列计算正确的是()

A.(xy)3=xy3 ÷x5=x

•5x3=15x5

3.下列命题:①相等的两个角是对顶角 ;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有( )

A. 1个 B. 2个 C. 3个 D. 4个

4. 已知 是二元一次方程组 的解,则 的值是()

A. B. C. D.

5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()

° ° ° °

第5题图

6.如图,AB∥CD,下列结论中错误的是( )

A. B. C. D.

7.下列计算中,运算正确的是()

A.(a﹣b)(a﹣b)=a2﹣b2 B.(x+2)(x﹣2)=x2﹣2

C.(2x+1)(2x﹣1)=2x2﹣1 D.(﹣3x+2)(﹣3x﹣2)=9x2﹣4

8. 下列运算中,运算错误的有( )

①(2x+y)2=4x2+y2,②(a-3b)2= a2-9b2 ,③(-x-y)2=x2-2xy+y2 ,④(x- ¬)2=x2-2x+ ,

个 个 个 个

9. 小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()

A . B. C. D.

10.我国古代数学名著《孙子算经》中记载了一道题,大意是: 100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片 瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()

A. B. C. D.

11.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是( )

A. 35° ° C. 25° D. 20°

12.观察下列各式及其展开式

……

请你猜想 的展开式第三项的系数是( )

A. 35 C. 55

第Ⅱ卷(非选择题 共102分)

二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.)

13. 甲型H1N1流感球形病毒细胞的直径约为 m,这个数用科学记数法表示是_____ ___.

14.如果 是二元一次方程,那么a = . b = .

15.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y千米/时,列出的二元一次方程组为 .

16. 如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是 . (填序号)

能够得到AB∥CD的条件是 .(填序号)

第16 题图

17.若a>0且 , ,则 的值为___ . 的值为___ .

18. 如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 .

三、解答题(本大题共10个小题.共78分.解答应写出文字说明、证明过程或演算步骤.)

19.计算(每小题3分,共12分)

(1) (2)

20.解方程组(每小题3分,共6分)

(1)解方程组: (2) 解方程组:

21.化简求值(每小题4分,共8分)

(1) . 其中

(2) . 其中

22.尺规作图(本 小题满分4分)

如图,过点A作BC的平行线EF

(说明:只允许尺规作图,不写作法,保留作图痕迹,要写结论.)

23.填空,将本题补充完整.(本小题满分7分)

如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.

解:∵EF∥AD(已知)

∴∠2= ( )

又∵∠1=∠2(已知)

∴∠1= (等量代换)

∴AB∥GD( )

∴∠BAC+ =180°( )

∵∠BAC=70°(已知)

∴∠AGD= ° 第23题图

24. 列二元一次方程组解应用题 (本小题满分7分)

某工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.

25. 列二元一次方程组解应用题(本小题满分8分)

已知一个两位数,它的十位上的数字与个位上的数字的和为12,若对调个位与十位上的数字,得到的新数比原数小18,求原来的两位数。

26.(本小题满分8分)

(1)先阅读,再填空:

(x+5)(x+6)=x2+11x+30;

(x-5)(x-6)=x2 -11x+30;

(x-5)(x+6)=x2+x-30;

(x+5)(x-6)=x2-x-30.

观察上面的算式,根据规律,直接写出下列各式的结果:

(a+90)(a-100)=____________; (y-80)(y-90)=____________.

(2)先阅读,再填空:

;

;

;

.

观察上面各式:①由此归纳出一般性规律:

________;

②根据①直接写出1+3+32+…+367 +368的结果 ____________.

27. (本小题满分8分)(请在括号里注明重要的推理依据)

如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.

28 . (本小题满分10分) (请在括号里注明重要的推理依据)

如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.

(1)求∠CBD的度数;

(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.

(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.

一.选择题

题号 1 2 3 4 5 6 7 8 9 10 11 12

答案 C C B C B A D D A C B B

二 填空题

13. 本题每空4分

14. 2,2 本题每空2分

15. 本题每空4分

16. ①④,②③⑤ 本题每空2分

17. ,72 本题每空2分

18. 10°,10°或42°,138° 答对一种情况得2分

三 解答题

19. (1)原式= ......2分.

= .....3分

(2)原式= ......1分

= ......3分

(3)原式= ......1分

= ......3分

(4)原式= ......2分.

= . .....3分

20. (1)解:由得: 

将代入得:

解得: ...........1分

将 代入得: ......2分

∴方程组的解为 ..........3分

(2)解:×3+×2得: ..........1分

将 代入得:

解得: ......2分

∴方程组的解为 . .........3分

21. (1) 解:原式= ..........1分

= .........2分

= .........3分

将 代入得:

原式=. ......... 4分

(2) 解:原式= ..........1分

= ......2分

= ..........3分

将 代入得:

原式=23 ......... 4分

22.略(作出一个角等于已知角(内错角或是同位角),

并标出直线EF3分,下结论1分)

23.(本题每空1分)

解:∵EF∥AD(已知)

∴∠2=∠3 (两直线平行,同位角相等 )

又∵∠1=∠2(已知)

∴∠1=∠3 (等量代换)

∴AB∥GD(内错角相等,两直线平行 )

∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)

∵∠BAC=70°(已知)

∴∠AGD=110 °

24.解:设去年总收入 万元,总 支出 万元. ……1分

根据题意得: ……4分

解得: ……6分

答:去年总收入200万元,总支出,150万元. ……7分

25.解:设个位数字为 ,十位数字为 . ……1分

根据题意得: ……5分

解得: ……7分

答:原来的两位数为75. ……8分

26. (本题每空2分) (1) ,

(2) ,

27.解:BD与CF平行 ……1分

证明:∵∠1=∠2,

∴DA∥BF( 内错角相等,两直线平行 ) ……3分

∴∠D=∠DBF(两直线平行,内错角相等)……5分

∵∠3=∠D

∴∠DBF=∠3(等量代换) ……6分

∴BD∥CF (内错角相等,两直线平行 )……8分

(注:没有注明主要理由扣1分)

28. (1)∵AM∥BN,

∴∠A+∠ABN=180°,(两直线平行,同旁内角互补)……1分

∵∠A=60°

∴∠ABN=120° ……2分

∵BC、BD分别平分∠ABP和∠PBN,

∴∠CBP= ∠ABP, ∠DBP= ∠NBP, ……3分

∴∠CBD= ∠ABN=60° ……4分

(2)不变化,∠APB=2∠ADB ……5分

证明∴ ∵AM∥BN,

∴∠APB=∠PBN (两直线平行,内错角相等) ……6分

∠ADB=∠DBN (两直线平行,内错角相等) ……7分

又∵BD平分∠PBN,

∴∠PBN =2∠DBN ……8分

∴∠APB=2∠ADB ……9分

(3)∠ABC=30° ……10分

(注:没有注明主要理由扣1分)

98 评论(9)

夏筱筱筱瞳

数学七年级下册期中考试试题(满分:100分;考试时间:100分钟)一、选择题(下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在相应括号内. 注意可以用各种不同的方法来解决你面前的选择题哦!2×12=24分)1、点(-7,0)在( )A、 轴正半轴上 B、 轴负半轴上 C、 轴正半轴上 D、 轴负半轴上 2、下列方程是二元一次方程的是( )A、 B、 C、 D、 3、已知点P位于 轴右侧,距 轴3个单位长度,位于 轴上方,距离 轴4个单位长度,则点P坐标是( )A、(-3,4) B、(4,3) C、(-4,3) D、(3,4)4、将下列长度的三条线段首尾顺次相接,能组成三角形的是( )A、4cm 3cm 5cm B、1cm 2cm 3cm C、25cm 12cm 11cm D、2cm 2cm 4cm5、二元一次方程组 的解是( )A、 B、 C、 D、6、用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A、正三角形 B、正方形 C、正五边形 D、正六边形7、已知ΔABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角( )A、 一定有一个内角为45° B、一定有一个内角为60°C、一定是直角三角形 D、一定是钝角三角形8、如图,在4×4的正方形网格中,∠1、∠2、∠3的大小关系是( )A、∠1>∠2>∠3 B、∠1=∠2>∠3C、∠1<∠2=∠3 D、∠1=∠2=∠39、如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=( )A、 70° B、110° C、100° D、以上都不对10、如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( )A、∠A=∠C B、∠E=∠F C、AE‖FC D、AB‖DC第9题 第10题11、平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于( )A、1 B、2 C、3 D、412、若一个n 边形的所有内角与某个外角的和等于1350°,则n 为( )A、七 B、八 C、九 D、十二、填空题(开动你的脑筋, 将与题目条件有关的内容尽可能全面完整地填在答题卷相应的位置上. 大家都在为你加油啊!3×10=30分)13、剧院里5排2号可以用(5,2)表示,则7排4号用 表示。14、如果两个角是对顶角,且互补,则这两个角都是 角。15、△ABC中,若∠B=∠A+∠C,则△ABC是 三角形。16、在三角形已知两边的长分别为3cm和4cm,若第三边的长为偶数则第三边的长是 。17、若方程 2x + y = 是二元一次方程,则mn= 。18、每个外角都是36°的多边形的边数为 ,它的内角和为 。19、如图,已知AB‖CD,CM平分∠BCD,∠B=74°,CM⊥CN,则∠NCE的度数是 。20、已知如图,平行直线a、b被直线 所截,如果∠1=75°,则∠2= 。第19题 第20题21、写出一个解为 的二元一次方程组 。三、解答题(解答要求写出文字说明, 证明过程或计算步骤, 如果你觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以, 可不要有题目下面是空白的喔!共46分)22、解方程(8分)(1) (2) 23、作图题(6分)如图,在△ABC中,ÐBAC是钝角,画出:⑴ÐBAC的平分线AD;⑵AC边上的中线BE;⑶AB边上的高CF.24、(6分)某镇由于大力发展种植业和竹业加工业, 使农民今年的收入比去年多15%, 而支出比去年少10%. 已知去年收支相抵结余为400万元, 估计今年可结余860万元, 求去年的收入与支出各是多少万元?25、(5分)如图,直线AB‖CD,EF分别交AB、CD于点M、G,MN平分∠EMB,GH平分∠MGD,求证:MN‖GH。证明:∵AB‖CD(已知) ∴∠EMB=∠EGD( ) ∵MN平分∠EMB,GH平分∠MGD(已知) ∴∠1= ∠EMB,∠2= ∠MGD( ) ∴∠1=∠2 ∴MN‖GH( )26、(6分)如图,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95。(1)求∠DCA的度数(2)求∠DCE的度数。27、已知:如图,在△ABC中,∠BAC=900,AD⊥BC于D,AE平分∠DAC,∠B=500,求∠AEC的度数.(6分)28、(9分)在图所示的平面直角坐标系中表示下面各点A(0,3) B(1,-3) C(3,-5) D(-3,-5) E(3,5) F(5,7) (1)A点到原点O的距离是 。(2)将点C向 轴的负方向平移6个单位,它与点 重合。(3)连接CE,则直线CE与 轴是什么关系?(4)点F分别到 、 轴的距离是多少?

131 评论(9)

相关问答