• 回答数

    8

  • 浏览数

    90

哈哈超man
首页 > 考试培训 > 大数据培训课程

8个回答 默认排序
  • 默认排序
  • 按时间排序

笑靥的梦魇

已采纳

hadoop等学费不到两万吧,不推荐培训,大数据前景可能还好点,但是java不一样,培训很水,对于java而言竞争越来越激烈,不管科班应届生还是转行培训的,没两三年经验包装都不好入职了现在,学历也是一关,也比较水,技术不强的也很多,培训机构意味着时间和金钱的大量成本,斟酌下吧

大数据培训课程

350 评论(8)

蝴蝶圆舞曲

(1)统计学:参数检验、非参检验、回归分析等。

(2)数学:线性代数、微积分等。

(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助。

(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的。

(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。

此外,如果要想走的更远,还要能掌握一些编程能力,从而借住一些专业的数据分析工具,帮助你完成工作。

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

参考资料:百度百科-大数据

273 评论(12)

lichao7980

培训课程如下:一、大数据前沿知识及hadoop入门零基础入门,了解大数据的历史背景及发展方向,掌握hadoop的两种安装配置二、Hadoop部署进阶熟练掌握hadoop集群搭建;对Hadoop架构的分布式文件系统HDFS进行深入分析三、Java基础了解java程序设计的基本思想,熟练利用eclipse进行简单的java程序设计,熟练使用jar文件,了解mysql等数据库管理系统的原理,了解基于web的程序开发流程四、MapReduce理论及实战熟悉MapReduce的工作原理及应用,熟悉基本的MapReduce程序设计,掌握根据大数据分析的目标设计和编写基于mapreduce的项目五、hadoop+Mahout大数据分析掌握基于hadoop+mahout的大数据分析方法的使用场景,熟练运用mahout的成熟算法进行特定场景的大数据分析六、Hbase理论及实战掌握hbase的数据存储及项目实战、掌握Spark、Hive的安装、配置及使用场景七、Spark大数据分析Spark、Hive的安装、配置及使用场景,熟练运用Spark的成熟算法进行特定场景的大数据分析八、大数据学习综合知识储备统计学:多元统计分析、应用回归计算机:R、python、SQL、数据分析、机器学习matlab和mathematica两个软件也是需要掌握的,前者在实际的工程应用和模拟分析上有很大优势,后者则在计算功能和数学模型分析上十分优秀,相互补助可以取长补短。

148 评论(15)

刀剑如梦1

老男孩教育的大数据培训课程内容包括:Java、Linux、Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python与大数据分析等

304 评论(11)

玉米卧熊

比较偏算法和理论的课程如数据挖掘,机器学习,深度学习,神经网络(自然语言处理);大数据框架像hadoop, spark,kafka等等都可以看看;数据库如Hive,Hbase,数据仓库Oracle;编程语言如python(我学过scikit learn库,挺好用,适合初学者),R,Java,还有一部分人用Scala(领英的后台就是Scala搭建的)。大数据这两年是个风口啊,有不少创业公司。AI也不错,待遇挺高。

248 评论(8)

niuzhirong

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的!

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3、Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4、Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5、Avro与Protobuf

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

7、HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8、phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9、Redis

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

300 评论(13)

沙沙小小囡

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。

好·说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。

记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

203 评论(13)

小胖爱旅游

全套课程免费下载

链接:

全套课程|更新专区|实战|进阶|入门|基础教程视频(中文+英文) 8课|从零开始学习视频(中文+英文) 7课|快速入门视频教程 10课|

219 评论(8)

相关问答