肖肖肖肖肖雪*
制订数学期末考试复习计划不要太满,要留出有效的时间做一套数学测试卷。 初三数学期末质量检测试卷 一、选择题(本大题共10小题,每小题4分,共40分。)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.在等腰直角三角形ABC中,∠C =90°,则sinA等于( ) A. B. C. D. 1 2. 抛物线 的对称轴是( ) A. 直线x=-8 B. 直线x=8 C. 直线x=3 D. 直线x=-3 3.若a:b=3:5,且b是a、c的比例中项,那么b:c的值是( ) A. 3:2 B. 5:3 C. 3:5 D. 2:3 4.下列函数中,当x>0时, 随 的增大而减小的是( ) A. y=3x B. C. D. y=2x2 5.在Rt△ABC中,∠C =90°,∠B =35°,AB=7,则BC的长为( ) A. B. 7 C. D. 6.已知在半径分别为4㎝和7㎝的两圆相交,则它们的圆心距可能是( ) ㎝ B. 3 ㎝ C. 10 ㎝ ㎝ 7. 抛物线 向左平移2个单位,再向下平移1个单位,则所得的抛物线的解析式为( ) B. y=x2+4x+5 C. y=x2-4x+3 D. y=x2-4x+5 8. 如图,△ABC中,点D在线段AB上,且∠BAD=∠C则下列结论一定正确的是( ) A. AB2=AC•BD B. AB•AD=BD•BC C. AB2=BC•BD D. AB•AD=BD•CD 9. 如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,胡娇同学观察得出了下面四条 信息:(1)(a≠0)b2-4ac>0;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的信息有( ) A. 4个 个 C. 2个 个 10. 在桐城市第七届中学生田径运动会上,小翰在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示的方向经过B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翰的跑步过程.设小翰跑步的时间为t(单位:秒),他与教练距离为y(单位:米),表示y与t的函数关系的图象大致如图2,则这个固定位置可能是图1的( ) A.点M B.点N C.点P 二、填空题(本大题共4小题,每小题5分,满分20分) 11. 如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧AC的长是 (结果保留π)。 12. 如图,AD、AC分别是⊙O的直径和弦,且∠CAD=30°,OB⊥AD,交AC于点B。若OB=5,则弦AC的长等于 。 13.我们已经学过函数图象的平移变换。 如: 向左平移5个单位,向上平移5个单位 。 向左平移5个单位,向上平移5个单位 . 向左平移5个单位,向上平移5个单位 = . 类比可得: 向左平移5个单位,向上平移5个单位 。 14.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是 。 得分 评卷人 三、(本大题共2小题,每小题8分,满分16分) 15.求值: sin60°+ 2sin30°tan30°-tan45° 16.已知抛物线 (1)用配方法确定它的顶点坐标、对称轴; (2)x取何值时,y<0? 四、(本大题共2小题,每小题8分,满分16分) 17. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).把△ABC绕着原点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出C1的坐标。 18.如图,已知AB是⊙O的直径,点C、D在⊙O的上,点E在⊙O的外,∠EAC=∠D=60°. (1)求∠ABC的度数; (2)求证:AE是⊙O的的切线。 五、(本大题共2小题,每小题10分,满分20分) 19.向气球内充入一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气球体积V(米3)的反比例函数,其图象如图所示(千帕是一种压强单位)。 (1)这个函数的解析式是怎样的? (2)当气球的体积为米3时,气球内气体的气压是多少千帕? (3)当气球内的气压大于168千帕时,气球将爆炸,为了安全起见,气体的体积应不小于多少? 20. 某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套,现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套。 (1) 求商家降价前每星期的销售利润为多少元? (2)降价后,商家要使每星期的销售利润最大,售价应定为多少元?最大销售利润是多少? 六、(本题满分12分) 七、(本题满分12分) 22.已知△ABC中,∠C=90°,AC=4,BC=3. (1)如图1,正方形DEFG内接于△ABC,其中DE在AB上,点G在AC上,点F在BC上,试求出正方形DEFG的边长; (2)①如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ; ②如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ; ③如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为 ; 八、(本题满分14分) 23.类比转化、从特殊到一般等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整。 原题:如图1,在平行四边形ABCD中,点E是BC边的中点,点F是线段AE上一点,BF的延长线交CD于点G。若 ,求 的值。 (1)尝试探究 在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 , 的值是 。 (2)类比延伸 在原题的条件下,若 (m>0),试求 的值(用含m的代数式表示,写出解答过程)。 (3)拓展迁移 如图2,在梯形ABCD中,AB∥CD,点E是BC边的中点,点F是线段AE上一点,若BF的延长线交CD于点G,且 ,则 的值是 。(用含m、n的代数式表示,不要求证明)。 初三数学期末质量检测试题答案 1 2 3 4 5 6 7 8 9 10 B C C B B C A C D B 11 12 13 14 15 15. 16.(1) ,顶点坐标( ),对称轴是直线 ; (2)x<-2或x> 。 17. 如图所示,C1的坐标(1,4)。 18.(1)600;(2)略。 19. (1) ;(2)140千帕;(3)不小于米3 20.(1)2400元; (2)设降价x元,每星期的销售利润为y元。 当X=5时,售价应定为125元时,最大销售利润 。 ㎝. 22.(1) ;(2)① ; ② ; ③ 。 23.(1) AB=3EH,CG=2EH, 。
杜嘉班纳Ricky
有一个高效的数学复习方法,会让你的初三数学期末考试成绩突飞猛进的。以下是我为你整理的初三上期期末考试数学卷,希望对大家有帮助!
一、 选择题(本题共32分,每题4分)
1. 已知 ,那么下列式子中一定成立的是( )
A. B. C.
2. 反比例函数y=-4x的图象在()
A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限
3. 如图,已知 ,那么添加下列一个条件后,仍无法判定
△ABC∽△ADE的是()
A. B. C. D.
4. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的
值是()
5. 同时投掷两枚硬币每次出现正面都向上的概率是( )
A. B. C. D.
6. 扇形的圆心角为60°,面积为6 ,则扇形的半径是( )
7. 已知二次函数 ( )的图象如图所示,有下列
结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )
个 个 个 个
8. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的
坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,
沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与
菱形OABC的两边分别交于点M,N(点M在点N的上方),
若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),
则能大致反映S与t的函数关系的图象是( )
二、 填空题(本题共16分,每题4分)
9. 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21cm,则其余两边长的和为 .
10. 在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为 .
11. 已知二次函数 的图象与x轴有交点,则k的取值范围是 .
12. 某商店将每件进价8元的商品按每件10元出售,一天可以售出约100件,该商店想通过降低售价增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低元,其销售量可增加约10件,那么要想使销售利润最大,则需要将这种商品的售价降
低 元.
三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)
13.计算:
14.已知:如图,在△ABC中,∠ACB= ,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F ,与AB交于点G.
求证:△ABC∽△FGD
15. 已知:如图,在△ABC中,CD⊥AB,sinA= ,AB=13,CD=12,
求AD的长和tanB的值.
16. 抛物线 与y轴交于(0,4)点.
(1) 求出m的值;并画出此抛物线的图象;
(2) 求此抛物线与x轴的交点坐标;
(3) 结合图象回答:x取什么值时,函数值y>0?
17.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请你在网格中画出一个△OCD,使它的顶点在格点上,且使△OCD与△OAB相似,相似比为2︰1.
18. 已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点, OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE=2cm.
求OD的长.
四、解答题(本题共15分,每题5分)
19.如图,已知反比例函数y= 与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.
(1)求出反比例函数的解析式;
(2)求△AOB的面积.
20. 如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角 为30°,测得乙楼底部B点的俯角 为60°,乙楼AB高为120 米. 求甲、乙两栋高楼的水平距离BD为多少米?
21. 如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;
(2)若BE=3,ED=6,求A B的长.
五、解答题(本题6分)
22. 端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.
其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.
(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;
(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)
23.已知抛物线 的图象向上平移m个单位( )得到的新抛物线过点(1,8).
(1)求m的值,并将平移后的抛物线解析式写成 的形式;
(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在 ≤ 时对应的函数值y的取值范围;
(3)设一次函数 ,问是否存在正整数 使得(2)中函数的函数值 时,对应的x的值为 ,若存在,求出 的值;若不存在,说明理由.
24. 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB•AF=CB•CD;
(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值.
25. 在平面直角坐标系中,抛物线 与 轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点坐标;
(2)在 轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;
(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.
三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)
13.解:
= …………………………………………….4分
= …………………………………………..5分
14.证明:∵∠ACB= , ,
∴∠ACB=∠FDG= . ……………………………….1分
∵ EF⊥AC,
∴ ∠FEA=90°. ……………………………….2分
∴∠FEA=∠BCA.
∴EF∥BC. ……………………………………..3分
∴ ∠FGB=∠B. ………………………………….4分
∴△ABC∽△FGD ………………………………..5分
15.解:∵CD⊥AB,
∴∠CDA=90°……………………………………1分
∵ sinA=
∴ AC=15. ………………………………………..2分
∴AD=9. ……………………………………….3分
∴BD=4. …………………………………………4分
∴tanB= ………………………………5分
16.解:(1)由题意,得,m-1=4
解得,m=5. …………………………………1分
图略. …………………………………………………2分
(2)抛物线的解析式为y=-x2+4. …………………3分
由题意,得,-x2+4=0.
解得, ,
抛物线与x轴的交点坐标为(2,0),(-2,0)………………4分
(3)-2
17.图正确 …………………………………………….4分
18. 解:∵OE⊥弦AC,
∴AD= AC=4. …………………………1分
∴OA2=OD2+AD2 ……………………………..2分
∴OA2=(OA-2)2+16
解得,OA=5. ………………………………4分
∴OD=3 ………………………………5分
四、解答题(本题共15分,每题5分)
19.(1)解:由题意,得,-(-2)+2=4
A点坐标(-2,4) …………………………………………..1分
K=-8.
反比例函数解析式为y=- . ………………………………..2分
(2)由题意,得,B点坐标(4,-2)………………………………3分
一次函数y=-x+2与x轴的交点坐标M(2,0),与y轴的交点N(0,2)………4分
S△AOB=S△OMB+S△OMN+S△AON= =6 …………………..5分
20.解:作CE⊥AB于点E. …………………………………….1分
,且 ,
四边形 是矩形.
.
设CE=x
在 中, .
,
AE= ………………………………………..2分
AB=120 - …………………………………..3分
在 中, .
,
………………………………………..4分
解得,x=90 ………………………………………….5分
答:甲、乙两栋高楼的水平距离BD为90米.
21. (1)证明:∵ AB=BC
∴弧AB=弧BC ………………………………1分
∴∠BDC=∠ADB,
∴DB平分∠ADC……………………………………………2分
(2)解:由(1)可知弧AB=弧BC,∴∠BAC=∠ADB
∵∠ABE=∠ABD
∴△ABE∽△DBA……………………………………3分
∴ABBE=BDAB
∵BE=3,ED=6
∴BD=9……………………………………4分
∴AB2=BE•BD=3×9=27
∴AB=33……………………………………5分
五、解答题(本题6分)
22.解:(1)
A B C
C (A,C) (B,C) (C,C)
D (A,D) (B,D) (C,D)
……………………2分
可能出现的所有结果:(A,C)、(B,C)、(C,C)、(A,D)、(B,D)、(C,D)……………4分
(2)P(获八折优惠购买粽子)= ………………………………………………..6分
六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)
.]解:(1)由题意可得
又点(1,8)在图象上
∴
∴ m=2 ………………………………………………………1分
∴ ……………………………………………2分
(2) ………………………………….3分
当 时, ………………4分
(3)不存在 ………………………………………………5分
理由:当y=y3且对应的-1
∴ , ………………………………………6分]
且 得
∴ 不存在正整数n满足条件 ………………………………………7分
24. (1)证明:∵ , ,∴DE垂直平分AC,
∴ ,∠DFA=∠DFC =90°,∠DAF=∠DCF.
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B.
∴△DCF∽△ABC. …………………………………………………………1分
∴ ,即 .
∴AB•AF=CB•CD. ………………………2分
(2)解:①∵AB=15,BC=9,∠ACB=90°,
∴ ,∴ .……………………3分
∴ ( ). ………………………………………4分
②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.
显然当P、A、B三点共线时PB+PA最小.
此时DP=DE,PB+PA=AB. …………………………5分
由(1), , ,得△DAF∽△ABC.
EF∥BC,得 ,EF= .
∴AF∶BC=AD∶AB,即6∶9=AD∶15.
∴AD=10.
Rt△ADF中,AD=10,AF=6,
∴DF=8.
∴ . …………………………………………6分
∴当 时,△PBC的周长最小,此时 . ………………………………………7分
25.解:(1)由题意,得
解得,
抛物线的解析式为y=-x2-2x+3 …………………………………1分
顶点C的坐标为(-1,4)………………………2分
(2)假设在y轴上存在满足条件的点D, 过点C作CE⊥y轴于点E.
由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,
∴∠3=∠1. 又∵∠CED=∠DOA =90°,
∴△CED ∽△DOA,
∴ .
设D(0,c),则 . …………3分
变形得 ,解之得 .
综合上述:在y轴上存在点D(0,3)或(0,1),
使△ACD是以AC为斜边的直角三角形. ………………………………… 4分
(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.
延长CP交x轴于M,∴AM=CM, ∴AM2=CM2.
设M(m,0),则( m+3)2=42+(m+1)2,∴m=2,即M(2,0).
设直线CM的解析式为y=k1x+b1,
则 , 解之得 , .
∴直线CM的解析式 .…………………………………………… 5分
,
解得 , (舍去).
.
∴ .………………………………………………6分
②若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.
过A作CA的垂线交PC于点F,作FN⊥x轴于点N.
由△CFA∽△CAH得 ,
由△FNA∽△AHC得 .
∴ , 点F坐标为(-5,1).
设直线CF的解析式为y=k2x+b2,则 ,解之得 .
∴直线CF的解析式 . ……………………………………………7分
,
解得 , (舍去).
∴ . …………………………………8分
∴满足条件的点P坐标为 或
优质考试培训问答知识库