princefrank
新课程高一上期期末数学综合模拟试卷1(必修) 一、选择题(每小题5分,共60分,每小题只有一个正确答案) 1、若 *** A={1,3,x},B={1, },A∪B={1,3,x},则满足条件的实数x的个数有( ) (A) 1个 (B) 2个 (C)3个 (D) 4个 2、右图所示的直观图,其原来平面图形的面积是( ) A,4 B.,4 C.,2 D.,8 3、下列图象中不能表示函数的图象的是 ( ) y y y o x x o x o x (A) (B) (C) (D) 4、有下列四个命题: 1)过三点确定一个平面 2)矩形是平面图形 3)三条直线两两相交则确定一个平面 4)两个相交平面把空间分成四个区域 其中错误命题的序号是( ). (A)1)和2) (B)1)和3) (C)2)和4) (D)2)和3) 5、直线L1:ax+3y+1=0, L2:2x+(a+1)y+1=0, 若L1‖L2,则a=( ) A.-3 B.2 C.-3或2 D.3或-2 6、某工厂今年前五个月每月生产某种产品的数量C(件)关于时间 C t(月)的函数图象如图所示,则这个工厂对这种产品来说( ) O 一 二 三 四 五 t (A)一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少 (B)一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平 (C)一至三月每月生产数量逐月增加,四、五两月均停止生产 (D)一至三月每月生产数量不变,四、五两月均停止生产 7、如图,平面不能用( ) 表示. (A)平面α (B)平面AB (C)平面AC (D)平面ABCD 8、设f(x)=3ax+1-2a 在(-1,1)内存在x0 使f(x0)=0 ,则a 的取值范围是 (A): -1<a<1/5 (B): a >1/5 (C): a>1/5 或a < -1 (D): a<-1 9、如图,如果MC⊥菱形ABCD所在的平面, 那么MA与BD的位置关系是( ) A.平行 B.垂直相交 C.异面 D.相交但不垂直 10、经过点M(1,1)且在两轴上截距相等的直线是( ) A.x+y=2 B.x+y=1 C.x=1或y=1 D.x+y=2或x=y 11、已知函数 ,其中n N,则f(8)=( ) (A)6 (B)7 (C) 2 (D)4 12、圆x2+y2+4x–4y+4=0关于直线l: x–y+2=0对称的圆的方程是( ) A.x2+y2=4 B.x2+y2–4x+4y=0 C.x2+y2=2 D.x2+y2–4x+4y–4=0 二、填空题(每小题4分,共4小题16分) 13、已知三点A(a,2) B(5,1) C(-4,2a)在同一条直线上, 则a= . 14、在边长为a的等边三角形ABC中,AD⊥BC于D, 沿AD折成二面角B-AD-C后,BC=12 a, 这时二面角B-AD-C的大小为 15、指数:函数y=(a+1)x 在R上是增函数,则a的取值范围是 16、有以下4个命题: ①函数f(x)= (a>0且a≠1)与函数g(x)= (a>0且a≠1)的定义域相同; ②函数f(x)=x3与函数g(x)= 的值域相同; ③函数f(x)= 与g(x)= 在(0,+∞)上都是增函数; ④如果函数f(x)有反函数f -1(x),则f(x+1)的反函数是f -1(x+1). 其中不正确的题号为 . 三、解答题 17、计算下列各式 (1)(lg2)2+lg5•lg20-1 (2) 18、定义在实数R上的函数y= f(x)是偶函数,当x≥0时, . (1)求f(x)在R上的表达式; (2)求y=f(x)的最大值,并写出f(x)在R上的单调区间(不必证明). 19、如图,一个圆锥形的空杯子上面放着一个半球形 的冰淇淋,如果冰淇淋融化了,会溢出杯子吗? 请用你的计算数据说明理由. 20、已知 三个顶点是 , , . (Ⅰ)求BC边中线AD所在直线方程; (Ⅱ)求点A到BC边的距离. 21、商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/ 件,商场以高于成本价的相同价格(标价)出售. 问: (Ⅰ)商场要获取最大利润,羊毛衫的标价应定为每件多少元? (Ⅱ)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元? 22、已知直线:y=x+b和圆x2+y2+2x―2y+1=0 (1)若直线和圆相切,求直线的方程;(2)若b=1,求直线和圆相交的弦长; 一CDDBA DBCCD BA 二或2 60˚ (0,+∞ ) 2,3 三 17.(1)原式=0 —————— 6分 (2)原式=4*27+2-7-2-1 =100 --------------------12分 18(1)f(x)= -4x2+8x-3 x≥0 -4x2-8x-3 xV半球 ----------------10# 所以如果冰淇淋融化了,不会溢出杯子 ---------12# 20 解(1)BC中点D(0,1) 中线AD所在直线方程:y=-3x+1 ---------6# (2) BC的方程为x-y+1=0 点A到BC边的距离=--------=2√2 ---------12# 21 (1)设羊毛衫的标价为每件x元,利润y元 则购买人数为 k(x-300) k
狐狸不会飞
高一数学期末必考的知识点概括1复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.1.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.高一数学期末必考的知识点概括21、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)高一数学期末必考的知识点概括3定义:从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。表达式:斜截式:y=kx+b两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)点斜式:y-y1=k(x-x1)截距式:(x/a)+(y/b)=0
皛白白皛
一、选择题:(每小题5分,共60分)
1、过点(-1,3)且垂直于直线x-2y+3=0的直线方程是( )
A、x-2y+7=0 B、2x+y-1=0
C、x-2y-5=0 D、2x+y-5=0
2、如图,一个空间几何体的主视图和左视图都是边长相等的正方形,
俯视图是一个圆,那么这个几何体是( )、
A、棱柱 B、圆柱 C、圆台 D、圆锥
3、 直线 :ax+3y+1=0, :2x+(a+1)y+1=0, 若 ∥ ,则a=( )
A、-3 B、2 C、-3或2 D、3或-2
4、已知圆C1:(x-3)2+y2=1,圆C2:x2+(y+4)2=16,则圆C1,C2的位置关系为( )
A、相交 B、相离 C、内切 D、外切
5、等差数列{an}中, 公差 那么使前 项和 最大的 值为( )
A、5 B、6 C、 5 或6 D、 6或7
6、若 是等比数列, 前n项和 ,则 ( )
A、 B、
7、若变量x,y满足约束条件y1,x+y0,x-y-20,则z=x-2y的最大值为( )
A、4 B、3
C、2 D、1
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
8、当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为( )
A、x2+y2-2x+4y=0 B、x2+y2+2x+4y=0
C、x2+y2+2x-4y=0 D、x2+y2-2x-4y=0
9、方程 表示的曲线是( )
A、一个圆 B、两个半圆 C、两个圆 D、半圆
10、在△ABC中,A为锐角,lgb+lg( )=lgsinA=-lg , 则△ABC为( )
A、 等腰三角形 B、 等边三角形 C、 直角三角形 D、 等腰直角三角形
11、设P为直线 上的动点,过点P作圆C 的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为( )
A、1 B、 C、 D、
12、设两条直线的方程分别 为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,
且018,则这两条直线之间的距离的最大值和最小值分别是( )、
A、 B、 C、 D、
第II卷(非选择题共90分)
二、填空题:(每小题5分,共20分)
13、空间直角 坐标系中点A和点B的坐标分别是(1,1,2)、(2,3,4),则 ______
14、 过点(1,2)且在两坐标轴上的截距相等的直线的方程 _
15、 若实数 满足 的取值范围为
16、锐角三角形 中,若 ,则下列叙述正确的是
① ② ③ ④
本文导航 1、首页2、高一第二学期数学期末考试试卷分析-23、高一第二学期数学期末考试试卷分析-3
三、解答题:(其中17小题10分,其它每小题12分,共70分)
17、直线l经过点P(2,-5),且与点A(3,-2)和B(-1,6)的距离之比为1:2,求直线l的方程、
18、在△ABC中,a,b,c分别是A,B,C的'对边,且2sin A=3cos A、
(1)若a2-c2=b2-mbc,求实数m的值;
(2)若a=3,求△ABC面积的最大值、
19、投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜 销售收入50万元、 设 表示前n年的纯利润总和(f(n)=前n年的总收入一前n年的总支出一投资额)、
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时, 以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?
20、 设有半径为3 的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇、设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?
21、设数列 的前n项和为 ,若对于任意的正整数n都有 、
(1)设 ,求证:数列 是等比数列,并求出 的通项公式。
(2)求数列 的前n项和、
22、已知曲线C:x2+y2-2x-4y+m=0
(1)当m为何值时,曲线C表示圆;
(2)若曲线C与直线x+2y-4=0交于M、N两点,且OMON(O为坐标原点),求m的值。
优质考试培训问答知识库