• 回答数

    3

  • 浏览数

    106

我们的2016
首页 > 考试培训 > 数学中考试题

3个回答 默认排序
  • 默认排序
  • 按时间排序

迷茫老男人

已采纳

找出你所在省3年的中考试卷,就知道了。

数学中考试题

140 评论(8)

草莓牛奶L

17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)

【考点】作图—相似变换.

【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.

【解答】解:如图,AD为所作.

18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的.兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.

请你根据以上提供的信息,解答下列问题:

(1)补全上面的条形统计图和扇形统计图;

(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;

(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?

【考点】众数;用样本估计总体;扇形统计图;条形统计图.

【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;

(2)根据(1)中补全的条形统计图可以得到众数;

(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.

【解答】解:(1)由题意可得,

调查的学生有:30÷25%=120(人),

选B的学生有:120﹣18﹣30﹣6=66(人),

B所占的百分比是:66÷120×100%=55%,

D所占的百分比是:6÷120×100%=5%,

故补全的条形统计图与扇形统计图如右图所示,

(2)由(1)中补全的条形统计图可知,

所抽取学生对数学学习喜欢程度的众数是:比较喜欢,

故答案为:比较喜欢;

(3)由(1)中补全的扇形统计图可得,

该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),

即该年级学生中对数学学习“不太喜欢”的有240人.

19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.

求证:AF∥CE.

【考点】平行四边形的性质;全等三角形的判定与性质.

【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.

【解答】证明:∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠1=∠2,

∵BF=DE,

∴BF+BD=DE+BD,

即DF=BE,

在△ADF和△CBE中,

∴△ADF≌△CBE(SAS),

∴∠AFD=∠CEB,

∴AF∥CE.

20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=米,FG=米.

如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

【考点】相似三角形的应用.

【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.

【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,

∠ACB=∠ECD,∠AFB=∠GHF,

故△ABC∽△EDC,△ABF∽△GFH,

则 = , = ,

即 = , = ,

解得:AB=99,

答:“望月阁”的高AB的长度为99m.

21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.

根据下面图象,回答下列问题:

(1)求线段AB所表示的函数关系式;

(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

【考点】一次函数的应用.

【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;

(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.

【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,

依题意有 ,

解得 .

故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);

(2)12+3﹣(7+)

=15﹣

=(小时),

112÷(千米/时),

÷80

=80÷80

=1(小时),

3+1=4(时).

答:他下午4时到家.

22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.

根据以上规则,回答下列问题:

(1)求一次“有效随机转动”可获得“乐”字的概率;

(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.

【考点】列表法与树状图法;概率公式.

【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;

(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.

【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;

∴一次“有效随机转动”可获得“乐”字的概率为: ;

(2)画树状图得:

∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,

∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为: .

23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.

求证:

(1)FC=FG;

(2)AB2=BC•BG.

【考点】相似三角形的判定与性质;垂径定理;切线的性质.

【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;

(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.

【解答】证明:(1)∵EF∥BC,AB⊥BG,

∴EF⊥AD,

∵E是AD的中点,

∴FA=FD,

∴∠FAD=∠D,

∵GB⊥AB,

∴∠GAB+∠G=∠D+∠DCB=90°,

∴∠DCB=∠G,

∵∠DCB=∠GCF,

∴∠GCF=∠G

,∴FC=FG;

300 评论(8)

酒窝喵喵兔

一、选择题(本题有10小题,每小题3分,共30分,请选出各题中一个符合题的正确选项)

1. 下列各组数中,互为相反数是( ▲ )

和 和-3 和- 和-

2. 如图,直线AB∥CD,A=70,C=40,则E等于( )

B. 40 C. 60 D. 70

3. 某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:C),这组数据

的中位数和众数分别是( )

A. 22C,26 B. 22C,20 C. 21C,26 D. 21C,20C

4.不等式组 的解集是( )

A. B. C. D.

5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(右图),则它的主视图是( )

A.图① B.图② C.图③ D.图④

6. 若反比例函数 的图象经过点 ,则这个函数的图象一定经过点( )

A. B. C. D.

7. 一个圆形人工湖如图所示,弦AB是湖上的一座桥.已知桥AB长100m,测得ACB=45.则

这个人工湖的直径AD为 ( )

A. B.

C. D.

8.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,

如图,它的母线长是2. 5米,底面半径为2米,则做这

把遮阳伞需用布料的面积是( )平方米(接缝不计)

A. B. C. D.

9. 如图是有关x的代数式的方阵,若第10行第2项的值为1034,

则此时x的值为( )

A. 10 B. 1 C. 5 D. 2

10. 已知△ABC中,D,E分别是AC,AB边上的中点,BDCE与

点F,CE=2,BD=4,则△ABC的面积为( )

A.

卷Ⅱ

二、填空题(本题有6小题,每题4分,共24分)

11.函数 中自变量x的取值范围是 .

12.分解因式: .

13.如图,在ABC中,M、N分别是AB、AC的中点,

且A +B=136,则ANM=

14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,

装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放

回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概

率是

15.(2012扬州)如图,将矩形ABCD沿CE折叠,点B恰好落在

边AD的F处.若 ,则tanDCF的值是_________.

16.(原创题)已知平面直角坐标系中,O为坐标原点,

点A坐标为(0,8),点B坐标为(4,0),点E是直

线y=x+4上的一个动点,若EAB=ABO,则点

E的坐标为 。

三、解答题(本题有8小题,共66分,各小题都必须写出解题过程).

17.(本题6分)计算: sin45-|-3|+

18.(本题6分)解方程: .

19.(本题6分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连结BO,若 .

(1)求该反比例函数的解析式;

(2)若直线AB与y轴的交点为C,求△OCB的面积.

20.(本题8分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C,BECD,垂足

为E,连接AC、BC.

(1)求证:BC平分

(2)若ABC=30,OA=4,求CE的长.

21.(本题8分)浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水五水共治的重大决策,某中学为了提高学生参与五水共治的积极性举行了五水共治知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已汇制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:

(1)这次知识竞赛共有多少名学生?

(2)浙江省委十三届四次全会提出,要以治污水、防洪水、排涝水、保供水、抓节水五水共治的重大决策, 二等奖对应的扇形圆心角度数,并将条形统计图补充完整;

(3)小华参加了此次的知识竞赛,请你帮他求出获得一等奖或二等奖的概率。

22.华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量 (万件)与纪念品的价格 (元/件)之间的函数图象如图所示,该公司纪念品的生产数量 (万件)与纪念品的价格 (元/件)近似满足函数关系式 ,若每件纪念品的价格不小于20元,且不大于40元.

请解答下列问题:

(1)求 与 的函数关系式,并写出 的取值范围;

(2)当价格 为何值时,使得纪念品产销平衡(生产量与销售量相等);

(3)当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?

23.(10分)小华用两块不全等的等腰直角三角形的三角板摆放图形.

(1)如图①所示两个等腰直角△ABC,△DBE,两直角边交于点F,连接BF、AD,求证:BF=AD;

(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,求证:FG=AC+DC;

(3)在(2)的条件下,若AG= ,DC=5,将一个45角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),若PG=2,求线段FQ的长.

24.(本题12分)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(0,4)、E(0,-2)两点,与y轴交于点B(2,0),连结AB。过点A作直线AKAB,动点P从点A出发以每秒 个单位长度的速度沿射线AK运动,设运动时间为t秒,过点P作PCx轴,垂足为C,把△ACP沿AP对折,使点C落在点D处。

(1)求抛物线的解析式;

(2)当点D在△ABP的.内部时,△ABP与△ADP不重叠部分的面积为S,求S与t之间的函数关系式,并直接写出t的取值范围;

(3)是否存在这样的时刻,使动点D到点O的距离最小,若存在请求出这个最小距离,若不存在说明理由.

数学模拟试卷

参考答案

一、选择题(本题有10小题,每小题3分,共30分)

1-5:BADCB 6-10:DBCDA

二、填空题(本题有6小题,每题4分,共24分)

11:

12:

13:44

14:

15:

16:

三、解答题(本题有8小题,共66分,各小题都必须写出解题过程).

17.

18. 经检验 是原方程的解

19.(1) 3分 (2) 6分

20.(本题8分)证明:连接OC

∵CD切⊙O于C

OCCD

∵BECD

OC∥BE

OCB=EBC

∵OC=OB

OCB=OBC

EBC=OBC

BC平分ABE4分

(2) 过A做CFAB于F

∵AB是⊙O的直径

ACB=90

∵ABC=30A=60

在Rt△ACF中,A=60,

∵BC平分ABE,CFAB,∵CEBE

8分(也可用相似求解)

21. 解:(1)200名2分

(2)72,二等奖人数为40名5分

(3) 8分

22、解:(1)设 与 的函数解析式为: ,将点 、 代入 得:

解得: 2分

与 的函数关系式为: 3分

(2)当 时,有 解得: 4分 当 时,有 解得:

当价格为30元或38元,可使公司产销平衡5分

(3)当 时,则 , 6分

当 时,则 , 7分

政府对每件纪念品应补贴1元. 8分

23. 解:(1)证明:∵△ABC,△DBE是等腰直角三角形,

△CDF也是等腰直角三角形;

CD=CF,(1分)

又∵BCF=ACD=90,AC=BC

△BCF≌△ACD,(2分)

BF=AD;(3分)

(2)证明:

∵△ABC、△BDE是等腰直角三角形

ABC=BAC=BDE=45,

∵FG∥CD,

G=45,

AF=FG;(4分)

∵CDCF,CDF=45,

CD=CF,(5分)

∵AF= AC +CF,

AF=AC+DC.

FG=AC+DC.(6分)

(3)过点B作BHFG垂足为H,过点P作PKAG于点K,(7分)

∵FG∥BC,C、D、B在一条直线上,

可证△AFG、△DCF是等腰直角三角形,

∵AG= ,CD=5,

根据勾股定理得:AF=FG=7,FD= ,

AC=BC=2,

BD=3;

∵BHFG,

BH∥CF,BHF=90,

∵FG∥BC,

四边形CFHB是矩形, (8分)

BH=5,FH=2;

∵FG∥BC,

G=45,

HG=BH=5,BG= ;

∵PKAG,PG=2,

PK=KG= ,

BK= ﹣ =4 ;(9分)

∵PBQ=45,HGB=45,

GBH=45,

2;

∵PKAG,BHFG,

BHQ=BKP=90,

△BQH∽△BPK,

QH= ,(9分)

(10分)

24、(12分)

(1)解:

抛物线的解析式为y= x2+ x+24分

(2)由AP= t和AOB∽PCA 可求得AC=t,

PC=2t5分

S=SABP-SADP= 2 t- 2tt

=-t2+5t6分

t的取值范围是0

(3)连结CD,交AP于点G,过点作D Hx轴,垂足为H

易证△ACG∽△DCH∽△BAO且OB:OA:AB=1:2:

因为DAP=CAP,点D始终在过点A的一条定直

线上运动,设这条定直线与y轴交于点E

当AC=t=1时,DC=2CG=2 =

DH= ,HC=

OH=5- =

点D的坐标为( , )10分

可求出直线AD的解析式为y=- x+ ,点E的坐标为(0, )

可求得AE= 11分

此时点RT△EAO斜边上的高即为OD的最小距离,为 = 12分

184 评论(12)

相关问答