果果果大美
11.如图,AB是直线,O是直线上一点,OC、OD是两条射线,则图中小于平角的角有() 个 个 个 个 【分析】利用角的定义以及结合图形得出即可. 【解答】解:图中小于平角的角有:∠AOC,∠COD,∠BOD,∠AOD,∠COB,共5个. 故选:C. 12.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A,B,C内的三个数依次是() ,0,﹣2 ,1,﹣2 ,﹣2,1 D.﹣2,0,1 【分析】利用正方体及其表面展开图的特点解题. 【解答】解:图中图形折叠成正方体后,A与0对应,B与2对应,C与﹣1对应.故选C. 二、填空题:(每空4分,共40分) 13.若3a4bm+1=﹣ a3n﹣2b2是同类项,则m﹣n=﹣1. 【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m﹣n的值. 【解答】解:由同类项的定义可知3n﹣2=4且m+1=2, 解得n=2,m=1, 所以m﹣n=﹣1. 14.已知A点在数轴上对应有理数a,现将A右移5个单位长度后再向左移7个单位长度到达B点,B点在数轴上对应的有理数为 ,则有理数a= . 【分析】设点A表示的数为x,根据左减右加,列出方程,即可解答. 【解答】解:设点A表示的数为x, 根据题意,得:x+5﹣7=﹣ , 解得:x= . 故答案为: . 15.计算21°49′+49°21′=71°10′. 【分析】根据度分秒的加法,相同单位相加,满60时向上一单位进1,可得答案. 【解答】解:原式=70°70′=71°10′. 故答案为:71°10′. 16.一件服装标价200元,以6折销售,可获利20%,这件服装的进价是100元. 【分析】根据题意,找出相等关系为:进价×(1+20%)=200×60%,设未知数列方程求解. 【解答】解:设这件服装的进价为x元,依题意得: (1+20%)x=200×60%, 解得:x=100, 则这件服装的进价是100元. 故答案为100. 17.若关于x的方程k(x2+1)+x2=x|k|+3为一元一次方程,那么k=﹣1. 【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0). 【解答】解:由k(x2+1)+x2=x|k|+3为一元一次方程,得 |k|=1,且k+1=0. 解得k=﹣1. 故答案为:k=﹣1. 18.已知OC平分∠AOB,若∠AOB=60°,∠COD=10°,则∠AOD的度数为20°或40°. 【分析】利用角的和差关系计算.根据题意可得此题要分两种情况,一种是OD在∠AOC内部,另一种是OD∠BOC内部. 【解答】解:分两种情况进行讨论: ①如图1,射线OD在∠AOC的内部, ∵OC平分∠AOB, ∴∠AOC=∠BOC, ∵∠AOB=60°, ∴∠AOC=∠BOC=30°, 又∵∠C0D=10°, ∴∠AOD=∠AOC﹣∠C0D=20°; ②如图2,射线OD在∠COB的内部, ∵OC平分∠AOB, ∴∠AOC=∠BOC, ∵∠AOB=60°, ∴∠AOC=∠BOC=30°, 又∵∠C0D=10°, ∴∠AOD=∠AOC+∠C0D=40°; 综上所述,∠AOD=20°或40° 故答案为20°或40°. 19.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为×108. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于149000000有9位,所以可以确定n=9﹣1=8. 【解答】解:149000000=×108, 故答案为:×108. 20.在看中央电视台“动物世界”节目时,我们可以看到这样的画面:非洲雄狮在广阔的草原上捕食鹿时,总是沿直线狂奔,其中蕴含的数学知识是两点之间,线段最短. 【分析】根据线段的性质解答. 【解答】解:沿直线狂奔蕴含的数学知识是:两点之间,线段最短. 故答案为:两点之间,线段最短. 21.假设有足够多的黑白围棋子,按照一定的规律排成一行: 请问第2010个棋子是黑的还是白的?答:黑的. 【分析】观察黑白围棋子排成,可得到每2白2黑1白1黑6个一组进行循环,由于2010=335×6,所以第2013个棋子与每组的第6颗棋子同色. 【解答】解:黑白围棋子每6个一组进行循环, 而2010=335×6, 所以第2010个棋子与第1组的第6颗棋子一样,即第2010个棋子是黑的. 故答案为:黑的. 22.下列说法中:①若ax=ay,则x=y(其中a是有理数);②若 ,则a<0;③代数式﹣3a+10b+3a﹣10b﹣2的值与a,b都无关;④当x=3时,代数式1+(3﹣x)2有最大值l;⑤若|a|=|﹣9|,则a=﹣9.其中正确的是:②③(填序号) 【分析】通过代数式的求值,绝对值的性质,等式的性质进行逐项分析解答即可推出结论. 【解答】解:①若a=0,x、y可取任意值,故本项错误, ②由题意可知,|a|=﹣a,即可推出a为非正数,结合a≠0,∴a<0,故本项正确, ③通过合并同类项,原式=﹣2,所以代数式的值与a、b没有关系,故本项正确, ④∵1+(3﹣x)2≥1,∴x=3时,原式=1,∴当x=3时,代数式1+(3﹣x)2有最小值l,故本项说法错误, ⑤由题意可知,|a|=9,所以a=±9,故本项错误, 所以,综上所述,②③正确. 故答案为②③. 三.综合题(62分) 23.计算: (1)﹣4﹣28﹣(﹣29)+(﹣24) (2)﹣32﹣|﹣6|﹣3×(﹣ )+(﹣2)2÷ (3)2(a2﹣ab)﹣2a2+3ab. 【分析】(1)原式利用减法法则变形,计算即可得到结果; (2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果; (3)原式去括号合并即可得到结果. 【解答】解:(1)原式=﹣4﹣28+29﹣24=﹣27; (2)原式=﹣9﹣6+1+2=﹣12; (3)原式=2a2﹣2ab﹣2a2+3ab=ab. 24.若|a+2|+(2b﹣4)2=0,求代数式4(a2b+ab2)﹣2(2a2b﹣1)﹣(2ab2+a2)+2的值. 【 分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值. 【解答】解:原式=4a2b+4ab2﹣4a2b+2﹣2ab2﹣a2+2=2ab2﹣a2+4, ∵|a+2|+(2b﹣4)2=0, ∴a+2=0,2b﹣4=0, 解得:a=﹣2,b=2, 则原式=﹣16﹣4+4=﹣16. 2 5.解方程 (1)4x﹣1=x+2 (2) . 【分析】(1)方程移项合并,把x系数化为1,即可求出解; (2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解. 【解答】解:(1)移项合并得:3x=3, 解得:x=1; (2)去括号得: ﹣ + = ,即 ﹣ =0, 去分母得:3x+6﹣5=0, 解得:x=﹣ . ,b,c三个数在数轴上的位置如图所示,化简:|a﹣b|﹣|a+c|﹣|c﹣b|. 【分析】根据数轴可以得到a、b、c的大小,a的绝对值与c的绝对值的大小,从而可以将|a﹣b|﹣|a+c|﹣|c﹣b|中的绝对值符号去掉并化简. 【解答】解:∵由数轴可得,a ∴|a﹣b|﹣|a+c|﹣|c﹣b| =b﹣a+(a+c)﹣(c﹣b) =b﹣a+a+c﹣c+b =2b. 27.如图,D是AB的中点,E是BC的中点,BE= AC=3cm,求线段DE的长. 【分析】根据已知求出AC,根据线段中点求出DB= AB,BE= BC,求出DE=DB+BE= AC,代入求出即可. 【解答】解:∵BE= AC=3cm, ∴AC=15cm, ∵D是AB的中点,E是BC的中点, ∴DB= AB,BE= BC, ∴DE=DB+BE = AB+ BC = AC = 15cm =, 即DE=. 28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数. 【分析】根据角平分线的定义先求∠BOC的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠BOE. 【解答】解:∵∠AOB=90°,OC平分∠AOB ∴∠BOC= ∠AOB=45°(3分) ∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45° ∠BOD=3∠DOE(6分) ∴∠DOE=15°(8分) ∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分) 故答案为75°. 29.小明家离学校5千米,放学后,爸爸从家里出发去学校接小明,与此同时小明从学校出发往家走,已知爸爸的速度是6千米/小时,小明的速度是4千米/小时. (1)爸爸与小明相遇时,爸爸走了多少时间? (2)若小明出发20分钟后发现书本忘带了,立刻转身以8千米/小时的速度返回学校拿到书本后仍以此速度继续往家走.请问爸爸与小明相遇时,离学校还有多远?(不计途中耽搁) 【分析】(1)根据爸爸的速度是6千米/小时,小明的速度是4千米/小时,小明家离学校5千米,利用两人行走的和为5千米列出方程求解即可; (2)设爸爸走了y小时,等量关系是:爸爸y小时行走的路程+小明以8千米/小时的速度行走(y﹣ )小时的路程﹣小明以4千米/小时的速度行走 小时的路程=5千米,依此列出方程求解即可. 【解答】解:(1)设爸爸走了x小时. 根据题意,得 (6+4)x=5, 解得:x= , 答:爸爸走了 小时. (2)设爸爸走了y小时,20分钟= 小时, 根据题意得:6y+8(y﹣ )﹣4× =5, 解得:y= , 则5﹣6× = (千米). 答:爸爸与小明相遇时,离学校还有 千米远.
huyingheng
有理数加减法则测试卷 姓名 学号 成绩 一、填空题:(第8题3分,其余每题2分,共29分) 1.某股票昨天每股跌了元,记做 —元,今天每股票涨了元,记作_________ 2.潜艇所在的高度是 —100m,一条鲨鱼在潜艇上方30m处,则鲨鱼的高度记作__________3、 下面五个数:—3,,1,,,0,, 将以上数填入下面适当的括号里:分数集合: , 负数集合: 正数集合: , 整数集合: 4. —的相反数是_______, —的绝对值是_________5.化简: —(—5)=_________, —=_________6.减去一个数,等于加上这个数的. 绝对值不小于5的所有正整数的和为 .8.计算:(1)—=____ (2)—2=____ (3) -9-(__)=.某人沿南北方向的跑道散步。先向南走了150米,然后又向北走了170米,此时他在原来位置的_________方向,与原位置相距_______米。10.数轴上A点表示的数是-2,那么同一数轴上与A点相距3个单位的点表示的数是________11.光谱数据,……的下一个数据是_________12. 若 , ,则 _____0, _______0.13.用“>”或“<”号填空:有理数a,b,c在数轴上对应的点如图:则a+b+c 0;|a| |b|;a+c b;c-b a; 14. 1 ―3+5―7 +9―11+…+97―99= 。二、选择题(每小题有且只有一个正确的答案,请将正确答案的代号填入括号内,每小题3分,共27分) 15.下列说法正确的是( ) A.—5是相反数 B、互为相反数的两个数的和一定为0 C.的相反数是 — D、正数与负数的互为相反数 16.下面给出的四个图中,表示数轴正确的是( ) A. B.C. D. 17.下列比较大小的题目中,正确的有( )题 (1)—5>—4 (2)3>0>—4 (3)—< (4)—>—A、1 B、2 C、3 D、418.绝对值小于3的整数有( )A.4个 B、5个 C、6个 D、7个19.与(—a)—(—b)相等的式子是( ) A、(+a)+(—b) B、(—a)+(—b) C、(—a)+(+b) D、(+a)+(—b)19. 下列说法正确的是( ) A. 两个数之差一定小于被减数 B. 减去一个负数,差一定大于被减数 C. 减去一个正数,差一定大于被减数 D. 0减去任何数,差都是负数20.比2小3的数是( ) A.—1 B、—5 C、1 D、521.若冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃。则冷冻室的温度(℃)可列式计算为( ) A.4—22= —18 B、22—4= 18 C、22—(—4)=26 D、—4—22= —2622 + = 0, 则y-x-的值是 ( )A -4 B -2 C-1 D1三.计算:(第19~21题每题2分,其余每题4分共18分)23、 — 25、9—(—3) 26、 (—5)—524、(—3)+(+8)—(—5) 28、(—)+(—)—(—)—(+)25..25. 26..四.解答题:(第31 题6分,其余每题10分,26分)27、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?28、已知12箱苹果,以每箱10千克为标准,超过10千克的数记为正数,不足10千克的数记为负数,称重记录如下:+ ,—,+,—,—,+,0,—,—,+,—,—。(1)、求12箱苹果的总重量;(2)、若每箱苹果的重量标准为(千克),则这12箱有几箱不合乎标准的?29.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为元,这天下午小李的营业额是多少?26,某国某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)星期 一 二 三 四 五 六 每股涨跌 +4 -1 -6 +2 (1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知此股民买进股票时付了‰的手续费,卖出时需付成交额‰的手续费和1‰的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?30.附加题。(20分)将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入下图(1)的9个空格中,使得横、竖、斜对角的3个数相加的和为0,怎么填? 若改用-2,-1,0,1,2,3,4,5,6这9个数分别填入下图(2)的9个空格中,使得横、竖、斜对角的3个数相加的和都相等,又怎么填?(1) (2)
馋猫儿星星
七年级上期期末达标测验题 (时间100分钟 满分100分) 一、选择题:(每小题3分,共30分) 1.下列说法正确的是( ) ①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③ ×104是精确到百分位;④a+5一定比a大;⑤(-2)3和-23相等. 个 个 个 个 2.若m,n互为相反数,则下列结论中不一定正确的是( ) C.│m│=│n│ D. 3.下列调查中必须用抽样调查的方式收集数据的有( ) ①检查一大批灯炮使用寿命的长短;②调查某一城市居民家庭的收入状况;③了解全班同学的身高情况;④检查某种药品的疗效 4.如图所示的是某晚报“百姓热线”一周内接到热线电话的统计图, 其中有关环境保护问题的电话最多,共70个,那么, 本周“百姓热线”共接到热线电话的个数是( ) 5.下列图形(如图所示)经过折叠不能围成正方体的是( ) 6.若(a+1)2+│b-2│=0,则a6(-a+2b)等于( ) 7.下面4个方程的变形中正确的是( ) x+2=0; 4x=2; C. =3 2x=15; x=-2 8.下列各式一定成立的有( ) ①a2=(-a)2; ②a3=(-a)3; ③-a2=│-a2│; ④a3=│-a3│ 个 个 个 个 9.将三角形绕直线I旋转一周,可以得到左图所示立体图形的是( ) 10.物体如图甲所示,则这两个物体的俯视图应是( ) 二、填空题:(每小题3分,共24分) 11.方程-x- a=-3的解是-4,则a=_________. 12.如图5,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面. 13.翻开数学书,连续看了3页,页码的和为453,则这3页的页码分别是第____页,第_______页,第________页. 14.观察下列图形和所给表样中的数据后回答问题. 梯形个数 1 2 3 4 5 …… 图形周长 5 8 11 14 17 …… 当图形的周长为80时,梯形的个数为_________. 15.近似数×105精确到________位,有________个有效数字. 16.一个角的补角比它的余角的3倍大10°,则这个角等于________. 17.开学时,对班上的男生进行了单杆引体向上的测验,以能做8次为标准, 超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下: 成绩 2 -1 0 3 -2 -3 1 4 人数 4 3 3 4 5 4 5 2 则该班男生的达标率约为:_______. 18.一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出, 结果每台微波炉比原价多赚了180元,这种微彼炉原价是________元. 三、解答题:(46分) 19.计算: . 20.解方程: . 21.股民小张星期五买某公司股票1000股,每股元,下表为第二周星期一至星期五每日该股票涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨跌 + + + (1)星期三收盘时,每股是多少元? (2)本周内最高价是每股多少元?最低价是每股多少元? (3)已知小张买进股票时付了成交额的手续费,卖出时付了成交额的手续费和成交额的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?(8分) 22.如图7所示的是某班的一次数学测验成绩的统计图(分数取正整数, 满分100分),请观察图形,并回答下列问题: (1)这个班有多少名学生? (2)这个班及格率(60分及格)是多少? (3)这个班80分以上有多少人?(8分) 23.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.(9分) 24.某市收取水费按以下规定:若每月每户用水不超过20立方米, 则每立方米水价按元收费;若超过20立方米,则超过的部分每立方米按2元收费, 如果某户居民在某月所缴水费的平均水价为每立方米元,那么他这个月共用了多少立方米的水?(9分) 答案: 一、选择题 二、填空题 15.万,两 ° 元 三、解答题 19. 20. 21.(1)元 (2)元,元 (3)×1000(1- )×1000(1+)=(元) 22.(1)60名 (2) (3)17 人 ° 立方米.就这么多了.
waterimilan
七年级上册期末数学测试试题第一部分一、填空(每题2分,共20分)1.按规律数:0,1,1,2,3,5,8,( ).2.数a在数轴上的对应点在原点的左边,且∣a∣=3,则a=.用“>”,“<”填空:①0_____________–1/8,②–4/5_____________–3/.已知:a+b=3,ab=–2,则(a+b)3+4ab的值是.计算:(–1)2000+(–1)2001=_____________..6.如图,∠BAC=∠ACD,则直线_____________∥直线_____________,∠BCD+_____________=180°.7.如图,直线a∥b, ∠1=45°15’,那么∠2=_____________,∠3=.地球离太阳约有一亿五千米,用科学记数法表示这个数_____________.是_____________米.9.抛掷两枚相同的硬币,同时出现两个正面的可能性是.把3(a+b)–(a+b)+ (a+b)– (a+b)合并同类项得_____________,二、选择题(本题有8小题,每题3分,共24分)11.下列各式中与a–b–c的值不相等的是( ).(A)a–(b+c) (B)a–(b–c)(C)(a–b)+(–c) (D)(–c)+(a–b)12.若四个不等于0的数相乘所得积的符号为负,那么这四个数中正数的个数是( ).(A)1个 (B)2个 (C)3个 (D)1个或3个13.如图所示 ,则下列判断正确的是( ).(A)a+b>0 (B)a+b<0 (C)ab>0 (D)∣b∣<∣a∣14.一个数的绝对值等于它的相反数,那么这个数( ).(A)是正整 (B)是负数 (C)不是正数 (D)不是零互为倒数,x,y互为相反数,且y≠0,则(a+b)(x+y)–ab– 的值为( ).(A)0 (B)1 (C)–1 (D)无法确认16.桌子上放着一个圆柱和一个长方体,如图所示,你认为俯视图应是( ).17.下列事件中,必然发生的事件是( ).(A)明天会下雨 (B)小明数学考试得99分(C)今天是星期一,明天就是星期二 (D)明年有370天18.正方体的截面中,边数最多的多边形是( ).(A)四边形 (B)五边形 (C)六边形 (D)七边形三、计算题(每题4分,共20分)19. 20.∣–5–4∣–5×(–2)2–1÷(–2)21.用计算器求值(精确到百分位).×(–)3÷(–27)+().[3x–2(1+2x)]23.化简求值:3x2–3( –2x+1)+4,其中x=–2.四、解答题(24题4分,25、26题各6分,共16分)24.如图,已知∠1+∠2=220°,a∥b,求∠1、∠2、∠3、∠4各是多少度?25.一辆汽车沿着一条南北向的公路来回秆驶,某一天早晨从A地出发,晚上最后到达B地,约定向北为正方向(如:+表示汽车向行驶千米,–6则表示汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+,–,–14,–,–,–.请你根据计算回答以下问题:(1)B地在A地何方?相距多少千米?(2)若汽车行驶每千米耗油升,那么这一天共耗油多少升?(结果保留两位有效数字)26.一只小虫从点A出发向北偏西30°方向爬了3cm到点B,再从点B出发向北偏东60°爬了3cm到点C(1)试画图确定A、B、C的位置;(2)从图上量出点C到点A的距离(精确到);(3)指出点C在点A的什么方位?(精确到1°)第二部分 开卷部分注意:下面提供了三个实践活动题,其中第三题为必做题材,每一、二题只要求选做一题,每题10分,共20分,与第一卷一起计入总分.27.同学们一定很熟悉自己美丽的校园吧?请你为学校画一份学样的视图.要求:(1)东南西藏自治区北的方位不能错.(2)尽量体现各处的几何图形,图形要准确,比例要恰当.(3)标出周围主要的街道、景物的图形及名称.(4)标明各年级所在的位置,各栋楼房的名称.28.请你仔细察看中国地图,找出我国的罚要大城市在哪里,精确地量出这些城市在地图上的直线距离,再根据地图上给出的比例尺计算出实际距离,然后列一个统计表,把这些距离都体现出来.(1)看谁的统计表列得巧妙.(2)对城市的密集程度进行分析.(3)一些主要的大城市不能漏掉.如果你的数据很多,可以供助电脑来分析.我选择的题是______________________题.29.对你周围你最感兴趣的一件事情进行调查,也可以从以下三题中任选一题进行调查:①学生喜欢喝什么牌的牛奶?(A)伊利 (B)蒙牛 (C)光明 (D)达能 (E)其他②天河区几大商场的客流最多的是哪家?(A)天河娱乐广场 (B)好又多 (C)购书中心 (D)天河城 (E)其他③班上同学每天的睡眠时间是多少?(A)7小时 (B)8小时 (C)9小时 (D)7小时以下 (E)9小时以上请你根据调查情况解答下列问题:(1)我调查的问题是_______________;调查对象是_______________;我所用的调查方法是_______________;总共调查的为伊为_______________;人.(2)制作统计表.(包括频数,频率)(3)制作统计图:根据所画的统计表,利用Microsotf office软件中的Excel工具制作统计图(要求三种不同的统计图表示);从你制作的统计图中,你可以得到哪些结论?请作出解释,说说你的理由.答案: 2.–3 3.>,< , ∠B °15’,134°45’×1011 (a+b) .–2(1/3)+1/4÷(–1/2)2 =-7/3+1/4÷1/4(2分) =–7/3+1(1分) =–4/3(1分)20.∣-5-4∣-5×(–2)2–1÷(–2) =9–5×4+1/2(2分) =9-20+1/2(1分) =–21/2(1分)(注:第19、20题答案也可以写成带分数的形式)×(–)3÷(–27)+(–) =–(3分) ≈(1分) (注:若分项书写计算过程,则可以分项得给分)[3x-2(1+2x)] =x-[3x-2-4x] (1分) =x-[–2–x] (1分) =x+2+x(1分) =2x+2(1分)–3(1/3x2–2x+1)+4 =3x2–x2+6x–3+4(1分) =2x2+6x+1. (1分) 当x=–2时, 原式=2×(–2)2+6×(–2)+1 =8–12+1(1分) =–3(1分)24.因为∠1+∠2=220°, ∠1=∠2(对顶角相等), 所以∠1=110°,∠2=110°.(2分) 因为∠1+∠3=180°, 所以∠3=180°-110°=70°.(1分) 因为a∥b, 所以∠4=∠1=110°(两直线平行,同位角相等)(1分) (注:不注明理由,可以不扣分)25.(1)+–14––– =()-() =, 所以B地在A地正南方,与A地相距千米处;(3分) (2) =(千米)× = ≈×102(升), 所以一天共耗油约×102升(3分)26.(1)A、B、C所在位置如图所示;(2分) (2)从图上量得点C到点A的距离约为;(2分) (3)点C在A点的北偏东约15°方位(2分)27.(1)校园各部分、各栋楼的方位基本正确,得5分; (2)除满足(1)以外,所画各部分的几何图形基本正确,比例较为恰当,得8分; (3)点C在A点的北偏东约15°方位(2分)28.(1)统计表基本正确,得5分; (2)统计表正确,对城市的密集程度分析基本到位,得8分; (3)分析城市较多,统计表正确,借助电脑分析,对城市的密集程度分析很好,得过且10分29.(1)回答出4个填空,得2分; (2)在回答(1)中的4个填空的同时,能基本正确地制作出统计表,得5分; (3)在正确完成(1)(2)的基础上,能正确制作三种不同的统计图,得8分;能更进一步作出合理的解释,得10分
优质考试培训问答知识库