• 回答数

    2

  • 浏览数

    305

囍兒小静静
首页 > 考试培训 > 初三数学期末考试题

2个回答 默认排序
  • 默认排序
  • 按时间排序

四川创和

已采纳

初三数学期末考试中,有许多的数学难题等着我们去解答,所以不要放松自己。 初三数学上册期末模拟试卷 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个结论中,有且只有一个结论是正确的,选对得4分;不选、错选或者多选得零分】 1. 下列图形一定是相似图形的是 ( ) (A)两个矩形; (B)两个正方形; (C)两个直角三角形; (D)两个等腰三角形. 2. 在Rt⊿ABC中,∠B=90°,AC=20,tgA= ,下列各式中正确的是 ( ) (A) AB=16 (B) sinA= (C) BC=18 (D) tgC= 3. 抛物线 的顶点坐标是( ) (A) ; (B) ; (C) ; (D) . 4. 已知点C是线段AB的中点,如果设 ,那么下列结论中,正确的是( ). (A) ; (B) ; (C) ; (D) . 5.若二次函数 的图象经过两点 、 ,则对称轴方程为( ) (A) ; (B) ; (C) ; (D)无法确定. 6、如图,在 中, , ,垂足为点 , 的平分线分别交 、 于点 、 ,连结 , 下列结论中错误的是( ) (A) ∽ ; (B) ∽ ; (C) ∽ ; (D) ∽ . 二、填空题(本大题共12题,每题4分,满分48分) 9. 设2y-3x=0(y≠0),则 _____________________. 10. 计算:cos60°+ctg45°= . 11. 抛物线 沿 轴向左平移3个单位,再沿 轴向下平移2个单位,所得的图象对应的解析式是 . 12. 小杰乘雪橇沿坡比为1﹕ 的斜坡笔直滑下,滑下的 距离 (米)与时间 (秒)的关系为 ,若小杰滑到坡底的时间为4秒,则他下降的高度为 (第12题) 13. 如图,有一块直角三角形纸片,两直角边AC=3,BC=4,将直角三角形纸片ABC折叠,使直角边AC落在斜边AB上,折痕为AD,则BD=____________. 14. 如果抛物线 的顶点在 轴上,那么 . 15. 如图,在 中,已知 , 是 的重心,则 的值是 . (第15题) (第17题) (第18题) 16. 已知等腰梯形的一条较短的底边长为6cm,较长的底边的一个底角的 正弦值为 ,梯形高为9cm,那么这个等腰梯形的较长的 底边长__________cm 17、二次函数y=a(x-1)2+c的图象如右下图所示,则直线y=-ax-c不经过第____象限 18、如图,在直角梯形 中, , , , , ,将梯形沿直线 翻折,使点 落在 边上的 点上, 点落在 边上的 点上,则 . 三、简答题:(本大题共7题,第19--22题,每题10分;第23、24题, 每题12分.第25题14分, 满分78分) 19. (本题满分10分)计算: . 20. 如图,在 中,点 是 中点,点 在边 上,且 ,如果 , , 求边 的长. 21. (本题满分10分)如图,已知在 中, ,点 在 上, ,且 ,若 . (1)求 的值; (2)求 的值. 22、已知一个二次函数的图像经过 、 、 三点. (1)求这个二次函数的解析式; (2)指出所求函数图像的顶点坐标和对称轴,并画出其大致图像. 23、(本题满分10分)如图,在 中, , ,过点 作 ,交 的平分线 于点 . (1)不添加字母,找出图中所有相似的三角形,并证明; (2)证明: . 24、(本题满分12分)抛物线 的图象如图所示,已知该抛物线与 轴交于 、 两点,顶点为 , (1)根据图象所给信息,求出抛物线的解析式;(3分) (2)求直线 与 轴交点 的坐标;(4分) (3)点 是直线 上的一点,且 与 相似,求点 的坐标. (5分) 25.(本题满分14分) 已知,在 中 , . (1)求 的长(如图a);(3分) (2) 、 分别是 、 上的点,且 ,连结 并延长,交 的延长线于点 ,设 (如图b). ①求 关于 的函数解析式,并写出 的定义域;(5分) ②当 为何值时, 是等腰三角形?(6分) 初三数学上册期末模拟试卷答案 24.解:(1)设 1分 ∵图像经过点(-1,0), ∴ 1分 ∴ 1分 (2) ,解得 ,∴ 1分 设 , 解得 1分 ∴ 1分 ∴ .1分 (3)设 , 1分 当 ∽ , , 1分 1分 当 ∽ , 过点 作 轴,垂足为点 , ∴ ∴ 1分 ∴ ,∴ 1分 综上所述, 的坐标是 或 . 25.(1)过点 作 ,垂足为点 1分 ∵在 中, , 1分 ∴在 中, 1分 (2)① 过点 作 ∥ ,交 于点 .1分 1分 ∵ ∥ , 1分 , 2分 ②若 , , ,矛盾∴ 不存在. 1分 若 ,则 , ,矛盾 ∴ 不存在. 1分 若 ,过点 作 ,垂足为点 . 1分 1分 整理得 ,又 ,解得 (舍)1分 ∴当 时, 是等腰三角形. 1分

初三数学期末考试题

149 评论(8)

超级懒喵喵

有一个高效的数学复习方法,会让你的初三数学期末考试成绩突飞猛进的。以下是我为你整理的初三上期期末考试数学卷,希望对大家有帮助!

一、 选择题(本题共32分,每题4分)

1. 已知 ,那么下列式子中一定成立的是( )

A. B. C.

2. 反比例函数y=-4x的图象在()

A.第一、三象限 B.第二、四象限 C.第一、二象限 D.第三、四象限

3. 如图,已知 ,那么添加下列一个条件后,仍无法判定

△ABC∽△ADE的是()

A. B. C. D.

4. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的

值是()

5. 同时投掷两枚硬币每次出现正面都向上的概率是( )

A. B. C. D.

6. 扇形的圆心角为60°,面积为6 ,则扇形的半径是( )

7. 已知二次函数 ( )的图象如图所示,有下列

结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )

个 个 个 个

8. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的

坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y轴出发,

沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与

菱形OABC的两边分别交于点M,N(点M在点N的上方),

若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),

则能大致反映S与t的函数关系的图象是( )

二、 填空题(本题共16分,每题4分)

9. 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21cm,则其余两边长的和为 .

10. 在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为 .

11. 已知二次函数 的图象与x轴有交点,则k的取值范围是 .

12. 某商店将每件进价8元的商品按每件10元出售,一天可以售出约100件,该商店想通过降低售价增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低元,其销售量可增加约10件,那么要想使销售利润最大,则需要将这种商品的售价降

低 元.

三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)

13.计算:

14.已知:如图,在△ABC中,∠ACB= ,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F ,与AB交于点G.

求证:△ABC∽△FGD

15. 已知:如图,在△ABC中,CD⊥AB,sinA= ,AB=13,CD=12,

求AD的长和tanB的值.

16. 抛物线 与y轴交于(0,4)点.

(1) 求出m的值;并画出此抛物线的图象;

(2) 求此抛物线与x轴的交点坐标;

(3) 结合图象回答:x取什么值时,函数值y>0?

17.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请你在网格中画出一个△OCD,使它的顶点在格点上,且使△OCD与△OAB相似,相似比为2︰1.

18. 已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点, OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE=2cm.

求OD的长.

四、解答题(本题共15分,每题5分)

19.如图,已知反比例函数y= 与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.

(1)求出反比例函数的解析式;

(2)求△AOB的面积.

20. 如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A点的仰角 为30°,测得乙楼底部B点的俯角 为60°,乙楼AB高为120 米. 求甲、乙两栋高楼的水平距离BD为多少米?

21. 如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.

(1)求证:DB平分∠ADC;

(2)若BE=3,ED=6,求A B的长.

五、解答题(本题6分)

22. 端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.

其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.

(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;

(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?

六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)

23.已知抛物线 的图象向上平移m个单位( )得到的新抛物线过点(1,8).

(1)求m的值,并将平移后的抛物线解析式写成 的形式;

(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在 ≤ 时对应的函数值y的取值范围;

(3)设一次函数 ,问是否存在正整数 使得(2)中函数的函数值 时,对应的x的值为 ,若存在,求出 的值;若不存在,说明理由.

24. 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.

(1)求证:AB•AF=CB•CD;

(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.

①求y关于x的函数关系式;

②当x为何值时,△PBC的周长最小,并求出此时y的值.

25. 在平面直角坐标系中,抛物线 与 轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.

(1)求抛物线的解析式和顶点坐标;

(2)在 轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;

(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.

三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)

13.解:

= …………………………………………….4分

= …………………………………………..5分

14.证明:∵∠ACB= , ,

∴∠ACB=∠FDG= . ……………………………….1分

∵ EF⊥AC,

∴ ∠FEA=90°. ……………………………….2分

∴∠FEA=∠BCA.

∴EF∥BC. ……………………………………..3分

∴ ∠FGB=∠B. ………………………………….4分

∴△ABC∽△FGD ………………………………..5分

15.解:∵CD⊥AB,

∴∠CDA=90°……………………………………1分

∵ sinA=

∴ AC=15. ………………………………………..2分

∴AD=9. ……………………………………….3分

∴BD=4. …………………………………………4分

∴tanB= ………………………………5分

16.解:(1)由题意,得,m-1=4

解得,m=5. …………………………………1分

图略. …………………………………………………2分

(2)抛物线的解析式为y=-x2+4. …………………3分

由题意,得,-x2+4=0.

解得, ,

抛物线与x轴的交点坐标为(2,0),(-2,0)………………4分

(3)-2

17.图正确 …………………………………………….4分

18. 解:∵OE⊥弦AC,

∴AD= AC=4. …………………………1分

∴OA2=OD2+AD2 ……………………………..2分

∴OA2=(OA-2)2+16

解得,OA=5. ………………………………4分

∴OD=3 ………………………………5分

四、解答题(本题共15分,每题5分)

19.(1)解:由题意,得,-(-2)+2=4

A点坐标(-2,4) …………………………………………..1分

K=-8.

反比例函数解析式为y=- . ………………………………..2分

(2)由题意,得,B点坐标(4,-2)………………………………3分

一次函数y=-x+2与x轴的交点坐标M(2,0),与y轴的交点N(0,2)………4分

S△AOB=S△OMB+S△OMN+S△AON= =6 …………………..5分

20.解:作CE⊥AB于点E. …………………………………….1分

,且 ,

四边形 是矩形.

.

设CE=x

在 中, .

AE= ………………………………………..2分

AB=120 - …………………………………..3分

在 中, .

………………………………………..4分

解得,x=90 ………………………………………….5分

答:甲、乙两栋高楼的水平距离BD为90米.

21. (1)证明:∵ AB=BC

∴弧AB=弧BC ………………………………1分

∴∠BDC=∠ADB,

∴DB平分∠ADC……………………………………………2分

(2)解:由(1)可知弧AB=弧BC,∴∠BAC=∠ADB

∵∠ABE=∠ABD

∴△ABE∽△DBA……………………………………3分

∴ABBE=BDAB

∵BE=3,ED=6

∴BD=9……………………………………4分

∴AB2=BE•BD=3×9=27

∴AB=33……………………………………5分

五、解答题(本题6分)

22.解:(1)

A B C

C (A,C) (B,C) (C,C)

D (A,D) (B,D) (C,D)

……………………2分

可能出现的所有结果:(A,C)、(B,C)、(C,C)、(A,D)、(B,D)、(C,D)……………4分

(2)P(获八折优惠购买粽子)= ………………………………………………..6分

六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)

.]解:(1)由题意可得

又点(1,8)在图象上

∴ m=2 ………………………………………………………1分

∴ ……………………………………………2分

(2) ………………………………….3分

当 时, ………………4分

(3)不存在 ………………………………………………5分

理由:当y=y3且对应的-1

∴ , ………………………………………6分]

且 得

∴ 不存在正整数n满足条件 ………………………………………7分

24. (1)证明:∵ , ,∴DE垂直平分AC,

∴ ,∠DFA=∠DFC =90°,∠DAF=∠DCF.

∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,

∴∠DCF=∠DAF=∠B.

∴△DCF∽△ABC. …………………………………………………………1分

∴ ,即 .

∴AB•AF=CB•CD. ………………………2分

(2)解:①∵AB=15,BC=9,∠ACB=90°,

∴ ,∴ .……………………3分

∴ ( ). ………………………………………4分

②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.

显然当P、A、B三点共线时PB+PA最小.

此时DP=DE,PB+PA=AB. …………………………5分

由(1), , ,得△DAF∽△ABC.

EF∥BC,得 ,EF= .

∴AF∶BC=AD∶AB,即6∶9=AD∶15.

∴AD=10.

Rt△ADF中,AD=10,AF=6,

∴DF=8.

∴ . …………………………………………6分

∴当 时,△PBC的周长最小,此时 . ………………………………………7分

25.解:(1)由题意,得

解得,

抛物线的解析式为y=-x2-2x+3 …………………………………1分

顶点C的坐标为(-1,4)………………………2分

(2)假设在y轴上存在满足条件的点D, 过点C作CE⊥y轴于点E.

由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,

∴∠3=∠1. 又∵∠CED=∠DOA =90°,

∴△CED ∽△DOA,

∴ .

设D(0,c),则 . …………3分

变形得 ,解之得 .

综合上述:在y轴上存在点D(0,3)或(0,1),

使△ACD是以AC为斜边的直角三角形. ………………………………… 4分

(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.

延长CP交x轴于M,∴AM=CM, ∴AM2=CM2.

设M(m,0),则( m+3)2=42+(m+1)2,∴m=2,即M(2,0).

设直线CM的解析式为y=k1x+b1,

则 , 解之得 , .

∴直线CM的解析式 .…………………………………………… 5分

解得 , (舍去).

.

∴ .………………………………………………6分

②若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.

过A作CA的垂线交PC于点F,作FN⊥x轴于点N.

由△CFA∽△CAH得 ,

由△FNA∽△AHC得 .

∴ , 点F坐标为(-5,1).

设直线CF的解析式为y=k2x+b2,则 ,解之得 .

∴直线CF的解析式 . ……………………………………………7分

解得 , (舍去).

∴ . …………………………………8分

∴满足条件的点P坐标为 或

253 评论(10)

相关问答