纳木错dolphin
小升初数学考试当中有一类题型叫做应用题,应用题是必出的,但是应用题有很多种类型,我整理了相关资料,希望能帮助到您。
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
解题思路:
由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
解:
一把椅子的价钱:288÷(10-1)=32(元)
一张桌子的价钱:32×10=320(元)
答:一张桌子320元,一把椅子32元。
2.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
解题思路:
根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:
4×2÷4=8÷4=2(千米)
答:甲每小时比乙快2千米。
3.李军和张强同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强元钱。每支铅笔多少钱?
解题思路:
根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强元钱,即可求每支铅笔的价钱。
解:
÷[13-(13+7)÷2]=÷[13—20÷2]=÷3=(元)
答:每支铅笔元。
4.甲、乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)
解题思路:
根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
解:
下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2=85×6÷2=255(千米)
答:两地相距255千米。
5.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走千米,第二小组每小时行千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
解题思路:
第一小组停下来参观果园时间,第二小组多行了[()]?千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(?)千米,由此便可求出追赶的时间。
解:
第一组追赶第二组的路程:()=(千米)
第一组追赶第二组所用时间:÷()=÷1=(小时)
答:第一组小时能追上第二小组。
6.有甲、乙两个仓库,每个仓库平均储存粮食吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
解题思路:
根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:
乙仓存粮:(×2+5)÷(4+1)=(65+5)÷5=70÷5=14(吨)
甲仓存粮:14×4-5=56-5=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
7. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
解题思路:
根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:
乙每天修的米数:
(400-10×4)÷(4+5)=(400-40)÷9=360÷9=40(米)
甲乙两队每天共修的米数:40×2+10=80+10=90(米)
答:两队每天修90米。
8. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
解题思路:
已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
解:
每把椅子的价钱:
(455-30×6)÷(6+5)=(455-180)÷11=275÷11=25(元)
每张桌子的价钱:25+30=55(元)
答:每张桌子55元,每把椅子25元。
9.一列火车和一列慢车,同时分别从甲、乙两地相对开出。快车每小时行75千米,车每小时行65千米,相遇时快车比慢车多行了40千米,甲、乙两地相距多少千米?
解题思路:
根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
解:
(7+65)×[40÷(75- 65)]=140×[40÷10]=140×4=560(千米)
答:甲、乙两地相距560千米。
10. 某玻璃广托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元,运后结算时,共付运费400元,托运中损坏了多少箱玻璃?
解题思路:
根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
解:
(20×250-4400)÷(10+20)=600÷120=5(箱)
答:损坏了5箱。
11. 王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
解题思路:
根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。
解:
2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时オ能追上一中队?
解题思路:
因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
解:
4×2÷(12-4)=4×2÷8 =1(时)
答:第二中队1小时能追上第一中队。
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
解题思路:
由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:
原计划烧煤天数: (1500+1000)÷(1500-1000)=2500÷500=5(天)
这堆煤的重量: 1500×(5-1)=1500×4=6000(千克)
答:这堆煤有6000千克。
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红元钱。结果小红买了8支铅笔和5本练习本,找回元。求一支铅笔多少元?
解题思路:
小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
解:
每本练习本比每支铅笔贵的钱数: ÷(8-5)=÷3=(元)
8个练习本比8支铅笔贵的钱数: ×8=(元)
每支铅笔的价钱: ()÷(5+8)=÷13=(元)
答:每支铅笔元。
15.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
解题思路:
父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。
解:
(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
解题思路:
根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
解:
已修的天数:(720×3-1200)÷80=960÷80=12(天)
公路全长: (720+80)×12+1200=800×12+1200=9600+1200=10800(米)
答:这条公路全长10800米。
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多,每个纸箱和每个木箱各装鞋多少双?
解题思路:
根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:
12个纸箱相当木箱的个数: 2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数: 1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数: 150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋150双。
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
解题思路:
由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完
。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
解:
水泥用完的天数:120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:30×6=180(袋)
沙子的总袋数:180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
解题思路:
根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
解:
每个茶杯的价钱:90÷(4×5+10)=3(元)
每个保温瓶的价钱:3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
解题思路:
已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
解:
第一个加数:572÷(10+1)=52
第二个加数:52×10=520
D20600531014
小学六年级是小升初的重要时间段,因此数学的要打好扎实的基础,那么应用题就是必须要学好的,下面是我为大家准备的小学六年级上册常考的数学应用题50道,希望对大家有所帮助!欢迎阅读,仅供参考。 1、加工一批零件,甲先加工了这批零件的3/5,接着乙加工了余下的3/4,已知甲加工的个数比乙多60个,这批零件共有多少个? 2、图书馆买来科技书和文艺书共340本,文艺书本数的1/3等于科技书的4/5.两种书各买来多少本? 3、一筐苹果卖掉1/5后,又卖掉6千克,这是卖出重量正好是剩下的1/2。这筐苹果原来有多少千克? 4、有两根塑料绳,一根长80米,另一根长40米,如果从两根绳子上各剪去同样长的一段后,短绳剩下的长度是长绳剩下的2/7,两根绳子各剪去多少米? 5、今年爷爷60岁,孙子11岁,当孙子的年龄是爷爷的3/10时,孙子多少岁? 6、书店运来科技书和文艺书共240本,科技书占1/6,后来又运来一批科技书,这时科技书占两种书总数的3/11,现在两种书各有多少本? 7、小丽读一本书,已读的和未读的页数之比是1:4,如果再读15页,则已读的未读的页数之比是2:5。这本书共多少页? 8、光华电视机厂上半年生产的电视机产量占全年生产计划的5/8,照这样的速度计算,全年可超产1000台,这个工厂上半年生产电视机多少台? 9、某工厂男女职工共有480人,其中男职工占总人数的60%,由于另有任务,男职工调走若干人,这时男职工人数占总人数的36%。调走多少人? 10、学校原有足球和篮球36个,其中足球与篮球之比是7:2,又买进一些足球后,足球是足球和篮球的总数的.80%,学校现在足球和篮球共有多少个? 11、甲乙两个仓库共有粮食180吨,现在把甲仓库粮食的1/6运入乙仓库后,甲乙两个仓库存粮数的比是5:4,甲乙两个仓库原来各有多少吨粮食? 12、科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。已知数学组与科技组共有69人,数学组比作文组多多少人? 13、甲乙两袋盐的重量之比是3:2,从甲袋中取出70克放入乙袋后,甲乙两袋盐的重量之比是4:5,原来甲袋有多少克的盐? 14、小华家上个月电费60元,这个月电费50元,这个月比上个月节约了百分之几? 15、某厂上半年完成全年计划产值的3/5,下半年完成全年计划产值的60%,实际全年超额60万元,全年计划产值多少万元? 16、一批零件按5:3分给师徒两人加工,结果师傅加工了1440个,超额完成任务的20%,徒弟加工了多少个? 17、六年一班今天没到校的人数是到校人数的1/9,求这个班今天的出席率? 18、小强看一本200页的故事书,5天看了全书的20%,照这样计算,几天看完全书?(用不同的思路解答) 19、一列火车从A地开往B地,行一段路程后,距离B地还有210千米,接着又行了全程的20%,这是已行的路程与未行路程的比是3:2,AB两地相距多少千米? 20、育才小学六年级有三个班,一、二班人数占全年级总人数的2/3, 一、三班人数占全年级总人数的60%,六年级一班有40人,全年级有多少人? 21、有盐水350克,其中盐占30%,加入一些水后,含盐率为5%,加入水多少克? 22、某厂去年第一季度完成全年计划的2/7,照这样计算,今年超过计划的百分之几? 23、一袋面粉,用去了1/3后,又放进8千克,这时袋里的面粉恰好是原来的80%,这袋面粉原来有多少千克? 24、某件商品100元,先提价10%后又降价10%,现价是多少元? 25、王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格的产品中又发现了两个不合格的零件,这时算出产品的合格率是94%,合格产品共有多少个? 26、甲乙两车同时从AB两站相对开除,第一次相遇后两车继续行驶,到达B、A两站后立即返回,第二次相遇时离B站的距离是AB全程的20%。已知甲车共行了360千米,AB两站相距多少千米? 27、柳树有60棵,杨树有40棵。(1)、杨树是柳树的百分之几?(2)、柳树是杨树的百分之几?(3)、柳树比杨树多百分之几?(4)、杨树比柳树少百分之几? 28、一筐苹果的2/5比它的15%重千克,这筐苹果有多少千克? 29、某校去年有学生800人,比今年多了25%,今年比去年减少百分之几? 30、水结成冰后,体积增加了1/11,当冰融化后,体积减少了几分之几? 31、某件商品打八折后是200元,这件商品的原价是多少元? 32、甲乙丙三个车间,甲车间人数比乙车间少1/4,丙车间人数比乙车间多25%已知甲车间90人,求丙车间人数? 33、一根电线,第一次用去全长的3/10,第二次用去的比第一次多3米,第三次用去全长的20%,正好用完,这根电线长多少米? 34、化肥厂去年前三个季度生产化肥456万吨,离完成全年计划还差5%,现在想力争比全年计划超额完成20%,那么第四季度要生产多少万吨? 35、水果店运来三种水果,橘子的筐数占总数的40%,苹果的筐数占总数的一半,梨的筐数比三种水果的平均筐数少14筐,三种水果一共有多少筐? 36、某班周一出勤35人,出勤率是。后天又来了一人请假离去,你知道这天的出勤率是多少吗? 37、妈妈将整存整取两年的钱取出来,得到的税后利息是元,年利率是,利息按5%缴纳利息税,请你算一算妈妈当时存了多少钱? 38、甲乙两车同时从A地开往B地,甲车行了全程的一半时,乙车离B地还有54千米,当甲车到达B地时,乙车行了全程的80%,AB两地路程是多少千米? 39、商场举行促销活动,某种手机每台按600元出售,则可获利30%。这种手机在促销中降价多少元? 40、某商场出售两件上衣都是60元,已知其中一件赚20%,另一件亏了20%。两件折合是赚还是亏?盈亏多少元? 41、某酒店本月营业额是200000元,比上个月减少两成,国家规定酒店营业额的20%上缴营业税,求本酒店上个月缴营业税多少元? 42、从A城到B城,甲车要10小时,乙车要8小时,如果两车从两城同时相向开出,几小时相遇? 43、如果把一个百分数的百分号去掉,所得的数比原来多,求原来的百分数是多少? 44、有盐水750g,含盐率20%,加了一些水后,含盐率8%,加水多少g? 45、把含糖30%的糖水300克和含糖20%的糖水200克混合到一起,求混合后的含糖率? 46、妹妹把一部分钱存到银行,定期三年,年利率是,利息按20%缴纳利息税,到期后,妹妹共取回来元,妹妹当时存了多少钱? 47、妹妹将20000元钱存入银行,定期两年,到期后妹妹除了按5%缴纳利息税后得到税后利息元,求两年期的年利率是多少? 48、一杯牛奶喝去20%加满水搅拌,再喝去50%后,杯中纯牛奶占杯子容量的百分之几? 49、大圆面积比小圆面积多平方厘米,大圆半径是小圆半径的倍。求大小园面积各是多少平方厘米? 50、小王按批发价买进一批牙刷,每支元,零售价每支元,当还剩下200支没卖时,小王计算扣除所有成本已经获利200元,商店买来牙刷多少支?
优质考试培训问答知识库