• 回答数

    6

  • 浏览数

    343

枫小High
首页 > 考试培训 > 大数据人工智能培训课程

6个回答 默认排序
  • 默认排序
  • 按时间排序

蓝星鬼魅

已采纳

Sqoop:(发音:skup)作为一款开源的离线数据传输工具,主要用于Hadoop(Hive) 与传统数据库(MySql,PostgreSQL)间的数据传递。它可以将一个关系数据库中数据导入Hadoop的HDFS中,也可以将HDFS中的数据导入关系型数据库中。

Flume:实时数据采集的一个开源框架,它是Cloudera提供的一个高可用用的、高可靠、分布式的海量日志采集、聚合和传输的系统。目前已经是Apache的顶级子项目。使用Flume可以收集诸如日志、时间等数据并将这些数据集中存储起来供下游使用(尤其是数据流框架,例如Storm)。和Flume类似的另一个框架是Scribe(FaceBook开源的日志收集系统,它为日志的分布式收集、统一处理提供一个可扩展的、高容错的简单方案)大数据分析培训课程内容有哪些

Kafka:通常来说Flume采集数据的速度和下游处理的速度通常不同步,因此实时平台架构都会用一个消息中间件来缓冲,而这方面最为流行和应用最为广泛的无疑是Kafka。它是由LinkedIn开发的一个分布式消息系统,以其可以水平扩展和高吞吐率而被广泛使用。目前主流的开源分布式处理系统(如Storm和Spark等)都支持与Kafka 集成。

Kafka是一个基于分布式的消息发布-订阅系统,特点是速度快、可扩展且持久。与其他消息发布-订阅系统类似,Kafka可在主题中保存消息的信息。生产者向主题写入数据,消费者从主题中读取数据。浅析大数据分析技术

作为一个分布式的、分区的、低延迟的、冗余的日志提交服务。和Kafka类似消息中间件开源产品还包括RabbiMQ、ActiveMQ、ZeroMQ等。

MapReduce:MapReduce是Google公司的核心计算模型,它将运行于大规模集群上的复杂并行计算过程高度抽象为两个函数:map和reduce。MapReduce最伟大之处在于其将处理大数据的能力赋予了普通开发人员,以至于普通开发人员即使不会任何的分布式编程知识,也能将自己的程序运行在分布式系统上处理海量数据。

Hive:MapReduce将处理大数据的能力赋予了普通开发人员,而Hive进一步将处理和分析大数据的能力赋予了实际的数据使用人员(数据开发工程师、数据分析师、算法工程师、和业务分析人员)。大数据分析培训课程大纲

Hive是由Facebook开发并贡献给Hadoop开源社区的,是一个建立在Hadoop体系结构上的一层SQL抽象。Hive提供了一些对Hadoop文件中数据集进行处理、查询、分析的工具。它支持类似于传统RDBMS的SQL语言的查询语言,一帮助那些熟悉SQL的用户处理和查询Hodoop在的数据,该查询语言称为Hive SQL。Hive SQL实际上先被SQL解析器解析,然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生产MapReduce任务后交给Hadoop集群处理。

Spark:尽管MapReduce和Hive能完成海量数据的大多数批处理工作,并且在打数据时代称为企业大数据处理的首选技术,但是其数据查询的延迟一直被诟病,而且也非常不适合迭代计算和DAG(有限无环图)计算。由于Spark具有可伸缩、基于内存计算能特点,且可以直接读写Hadoop上任何格式的数据,较好地满足了数据即时查询和迭代分析的需求,因此变得越来越流行。

Spark是UC Berkeley AMP Lab(加州大学伯克利分校的 AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,它拥有Hadoop MapReduce所具有的优点,但不同MapReduce的是,Job中间输出结果可以保存在内存中,从而不需要再读写HDFS ,因此能更好适用于数据挖掘和机器学习等需要迭代的MapReduce算法。

Spark也提供类Live的SQL接口,即Spark SQL,来方便数据人员处理和分析数据。

Spark还有用于处理实时数据的流计算框架Spark Streaming,其基本原理是将实时流数据分成小的时间片段(秒或几百毫秒),以类似Spark离线批处理的方式来处理这小部分数据。

Storm:MapReduce、Hive和Spark是离线和准实时数据处理的主要工具,而Storm是实时处理数据的。

Storm是Twitter开源的一个类似于Hadoop的实时数据处理框架。Storm对于实时计算的意义相当于Hadoop对于批处理的意义。Hadoop提供了Map和Reduce原语,使对数据进行批处理变得非常简单和优美。同样,Storm也对数据的实时计算提供了简单的Spout和Bolt原语。Storm集群表面上和Hadoop集群非常像,但是在Hadoop上面运行的是MapReduce的Job,而在Storm上面运行的是Topology(拓扑)。

Storm拓扑任务和Hadoop MapReduce任务一个非常关键的区别在于:1个MapReduce Job最终会结束,而一个Topology永远运行(除非显示的杀掉它),所以实际上Storm等实时任务的资源使用相比离线MapReduce任务等要大很多,因为离线任务运行完就释放掉所使用的计算、内存等资源,而Storm等实时任务必须一直占有直到被显式的杀掉。Storm具有低延迟、分布式、可扩展、高容错等特性,可以保证消息不丢失,目前Storm, 类Storm或基于Storm抽象的框架技术是实时处理、流处理领域主要采用的技术。

Flink:在数据处理领域,批处理任务和实时流计算任务一般被认为是两种不同的任务,一个数据项目一般会被设计为只能处理其中一种任务,例如Storm只支持流处理任务,而MapReduce, Hive只支持批处理任务。

Apache Flink是一个同时面向分布式实时流处理和批量数据处理的开源数据平台,它能基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能。Flink在实现流处理和批处理时,与传统的一些方案完全不同,它从另一个视角看待流处理和批处理,将二者统一起来。Flink完全支持流处理,批处理被作为一种特殊的流处理,只是它的数据流被定义为有界的而已。基于同一个Flink运行时,Flink分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。大数据分析要学什么

Beam:Google开源的Beam在Flink基础上更进了一步,不但希望统一批处理和流处理,而且希望统一大数据处理范式和标准。Apache Beam项目重点在于数据处理的的编程范式和接口定义,并不涉及具体执行引擎的实现。Apache Beam希望基于Beam开发的数据处理程序可以执行在任意的分布式计算引擎上。

Apache Beam主要由Beam SDK和Beam Runner组成,Beam SDK定义了开发分布式数据处理任务业务逻辑的API接口,生成的分布式数据处理任务Pipeline交给具体的Beam Runner执行引擎。Apache Flink目前支持的API是由Java语言实现的,它支持的底层执行引擎包括Apache Flink、Apache Spark和Google Cloud Flatform。

相关推荐:

《大数据分析方法》、《转行大数据分析师后悔了》、《大数据分析师工作内容》、《学大数据分析培训多少钱》、《大数据分析培训课程大纲》、《大数据分析培训课程内容有哪些》、《大数据分析方法》、《大数据分析十八般工具》

大数据人工智能培训课程

167 评论(8)

xiaoqiao945

大数据和人工智能培训课程靠谱。如需学习大数据和人工智能培训课程推荐选择【达内教育】,该机构该机构拥有行业内完善的教研团队,强大的师资力量,确保学员利益,全方位保障学员学习。【达内教育】优点具体如下:1、项目实战训练:参加达内培训必须经过项目实战训练。学生只有经过项目实战训练,才能在面试和后期工作中从容应对。当然了项目实战训练时间和项目的难度、项目的数量相关。项目难度越大、项目越多学习的时间越长。2、达内教育的涉及领域广:开设课程多,面向人群广。不论是大学刚毕业对前途感到迷茫的年轻人,还是身处职场遇到职业生涯瓶颈的职场人士,以及对编程感兴趣想要提前学习了解为以后打基础的青少年。都可以在达内教育找到适合自己的课程。感兴趣的话点击此处,免费学习一下想了解更多有关大数据和人工智能培训课的相关信息,推荐咨询【达内教育】。该机构是引领行业的职业教育公司,致力于面向IT互联网行业培养人才,达内大型T专场招聘会每年定期举行,为学员搭建快捷高效的双选绿色通道,在提升学员的面试能力、积累面试经验同时也帮助不同技术方向的达内学员快速就业。达内IT培训机构,试听名额限时抢购。

326 评论(12)

huangmanjing

老男孩教育的大数据培训课程内容包括:Java、Linux、Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python与大数据分析等

303 评论(9)

芥末生煎

How:出于兴趣而非需求,自学人工智能的方法论人们可以对自己从哪儿来、到哪儿去感兴趣,去了解柏拉图、维特根斯坦和齐泽克,了解朴素唯物与机械主义,但并不需要成为哲学家。如果你并非为了成为研究者,只是出于兴趣学习人工智能,完全不必被铺天盖地的代码困住手脚,只需遵循以下原则:1、明确内涵和现实每个人都知道人工智能的目标是「实现与人类相似的智能」,当下的我们处在哪个阶段?已经取得了哪些成果?人工智能早已进入我们的生活,搜索引擎的排序、美颜相机的美化效果、今日头条等信息流推荐类内容产品,全部都是当下的人工智能应用。虽然与思考和智能相去甚远、被称作「弱人工智能」,它依然能比人类更高效的完成特定任务。除了这些互联网领域的应用,人脸识别验票闸机、医院的叫号系统这类行业应用,甚至港口管理、油田预测、新药研发,通通都有弱人工智能的身影。如果提起人工智能,出现在你脑中的是 Samantha、Wall-E 或是终结者这些机器人形象,恐怕需要更近一步了解现实。这些应用如何实现?为什么能实现?没有任何学科建立在空谈的基础上,人工智能也不例外。接下来,我们需要——2、理解「黑话」机器学习、深度学习、监督学习、计算机视觉、神经网络、RNN……它们是什么?和人工智能有什么关系?如果你听说过或是了解以上名词的含义,恭喜你,你已经踏入了人工智能的大门。这些名词就像是历史教科书上的事件名,或是数学中的定理,了解它们的内涵、探寻它们之间的关系,能帮助你找到这门学科的层次和边界。比如:「机器学习」、「深度学习」、「监督学习」是人工智能得以实现的方式,其中「深度学习」属于「机器学习」的分支,是以超过 8 层的「神经网络」为标志的模型训练方法;「监督学习」则是从输入数据是否带有标签的角度对「机器学习」进行划分,除此之外还有「无监督学习」和「半监督学习」;RNN 则是「神经网络」的分支,即「循环神经网络」……那,模型、数据、标签又是什么?顺着这些「黑话」和它们关联的「黑话」,你会渐渐理解人工智能的能做什么、不能做什么,为什么会出现某些现象(如 AlphaGo),以及接下来会发生什么。还有很重要的一点——3、抛弃想象想象宇宙中的其他文明,想象一个由机器控制的社会,想象一个为爱落泪的机器人。想象给了我们无限可能,是人类最宝贵的能力之一,不过我们的世界依然建立在「真实」之上。把「想象」留给艺术,把「真实」留给科学。What:我们该怎么做?有了方法论,接下来当然是……获取优质的信息。1、课程类经典的系统课程有很多,例如 Andrew Ng 的斯坦福机器学习课程等等,答案里也有很多推荐质量相当高,在此不多做赘述。除了学院派系统课程,很多媒体或内容平台上也有工业界人工智能专家的「公开课」。这些「公开课」更类似于讲座,有时是对现状的思考、总结,有时会针对人工智能的某一现实痛点展开。如果上一节的「黑话」过关,可以相当轻松的学到不少书本上没有的知识,以及他人的思考沉淀(这部分相当宝贵),很适合对某一领域感兴趣的人研读。2、机构、学术会议及论文人工智能领域是高度依赖学术界,并保留有非常强学术传统的领域。如面向 CV 领域的视觉与学习青年学者研讨会(Valse),面向NLP领域的中文人工智能学会等,这些学会机构除了定期举办公开讲座,同时会会不定期的发布相关内容。以及这些学会机构往往也会举办暑期学校等培训课程,质量较高,对细分领域感兴趣不妨了解课程构成后报名学习。论文也是一个不错的学习途径,知网可以搜索论文购买阅读。以及人工智能领域是一个高度信息流通的学科,如果英文过关,不妨前往 阅读英文论文。3、媒体及社交媒体除了学术熏陶,新鲜新闻资讯可以帮助我们了解当下、提供启发。目前中文领域有不少细分媒体专注人工智能领域,一些科技媒体的人工智能子版块质量也相当不错。以及不少研究者在微博、微信等社交媒体上也相当活跃,同时知乎也有不少人工智能大 V 正在活跃,可以根据自己感兴趣的方向进行关注。4、书籍「西瓜书」《机器学习》,李航老师的《统计学习方法》,「三驾马车」巨著《深度学习》,都是相当经典的入门书。太难了看不懂?《图解深度学习》、《科学的极致|漫谈人工智能》、《Python神经网络编程》这些向科普方向倾斜的书籍也不错哦。Why:真正的知识都是免费的说了这么多、推荐了这么多,点赞、收藏对于一个人的自学旅程来说,连开始都算不上。重要的是去看、去思考、去实践,远比做出一个「我想要」的姿态重要得多。寻求知识的道路异常艰辛,在此引用汪丁丁教授的一段话作为结尾:「一流的知识只能免费,这是因为它只吸引少数能够理解它的人。这些人是最可宝贵的……他们投入的理解力和伴随着理解一流知识的艰辛,价值远远超过任何付费知识的市场价格。」愿我们都有与一流知识相配的美德。

248 评论(11)

jason86122

大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、 ... 大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、复习所有知识、完成项目布置等。 除此之外大数据工程师培训课程有哪些? 大数据工程师培训课程第一部分:大数据基础——java语言基础方面 1、Java语言基础 Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类 2、 HTML、CSS与Java PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用 3、JavaWeb和数据库 数据库、JavaWeb开发核心、JavaWeb开发内幕 大数据工程师培训课程第二部分: Linux&Hadoop生态体系 Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架 大数据工程师培训课程第三部分:分布式计算框架和Spark&Strom生态体系 1、分布式计算框架 Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网() 2、storm技术架构体系 Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战 大数据工程师培训课程第四部分:大数据项目实战(一线公司真实项目) 数据获取、数据处理、数据分析、数据展现、数据应用 大数据工程师培训课程第五部分:大数据分析 —AI(人工智能) Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习 1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析

264 评论(8)

叮叮猫儿要飞

目前国内人工智能相关岗位的应届毕业生的起薪基本都在10k—20k之间,毕业三年后人工智能岗位的技术人员,平均月薪在25k以上,基本实现薪酬翻番,薪资水平、就业满意度都优于全国平均水平的专业。

数据科学与大数据专业和人工智能专业的必修基础课程方面一般包含大数据(人工智能)概论、Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数学及统计类课程(高等数学、线性代数、概率论、数理统计)、大数据应用开发语言、Hadoop大数据技术、分布式数据库原理与应用、数据导入与预处理应用、数据挖掘技术与应用、大数据分析与内存计算等。选修的课程方面数据可视化技术、商务智能方法与应用、机器学习、人工智能技术与应用等。实践应用课程方面海量数据预处理实战、海量数据挖掘与可视化实战等。

数据科学与大数据技术与人工智能专业可从事的岗位有:分析类,分析工程师、算法工程师;研发类,架构工程师、开发工程师、运维工程师;管理类,产品经理、运营经理。

人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。就业方向为:

科学研究

工程开发

计算机方向

软件工程

应用数学

电气自动化

通信

机械制造

120 评论(13)

相关问答