yjqs221990
同学们在数学考试之前做好复习计划的工作是很有必要的,记得做八年级数学期末试题,以下是我为你整理的八年级上册数学期末试卷苏科版,希望对大家有帮助!
一、填空 (每题2分,共24分)
的算术平方根是 ;-27的立方根是 .
2.点A(3,-4)位于第 象限,点A到原点O的距离等于 .
3.若数据2,x,4,8的平均数是4,则这组数据的众数是 ;中位数是 .
4.已知点A(3,b)与点B(a,-2)关于y轴对称,则a= ;b= .
5.已知一次函数 的图象与x交于点A(2,0),则k= ;该函数y的值随x的增大而 (添填增大或减少).
6.在等腰△ABC中,∠A=4∠B. (1)若∠A是顶角,则∠C= ;(2) 若∠A是底角,则∠C= .
7.菱形的面积是24cm2,一条对角线长是8cm,则另一条对角线长为 ;该菱形的周长是 .
8.据统计,2011年十•一期间,我市某风景区接待游客的人数为89740人次,将这个数字保留三个有效数字,用科学记数法可表示为 .
9.经过点P(0,5),且平行于直线y=-3x+7的直线解析式是 .
10.如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°,AE∥DC,若AE=4 cm,则梯形ABCD的周长是 .
(第10题图) (第11题图)
11.如图,在△AOB中,∠B=25°, 将△AOB绕点O顺时针旋转50° 得到△A′OB′,边A′B ′
与边OB交于点C(点A′不在OB上),则∠A′CO的度数为 .
12.如图,已知1号、4号两个正方形的面积和为8,2号、3号两个正方形 的 面积和为5,则a、b、c三个正方形的面积和为 .
二、选择(每题2分,共18分)
13. 下列说法正确的是
的平方根是±3 的立方根是±1
C. =±1 D.一个数的算术平方根一定是正数
14.如图,将一块正方形纸片沿对角折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是
15.一次函数 的图象不经过
A.第一象限 B.第二象限 C.第三象限 D.第四象限
16.下列条件中,不能判断△ABC为直角三角形的是
A. , , ∶b∶c=3∶4∶5
C.∠A+∠B=∠C D.∠A∶∠B∶∠C=3∶4∶5
17.若等腰三角形的两边长分别是3和6,则这个三角形的周长是
或15
18.点 、 在直线 上,则 与 大小关系是
A. B. C. D.无法确定
19.如图所示,在梯形ABCD中,AD∥BC,中位线EF交BD于点O,若OE∶OF=1∶4,则AD∶BC等于
∶2 ∶4 ∶8 ∶16
(第19题图) (第20题图) (第21题图)
20. 如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边满足下列 条件时,四边形EFGH是菱形.
∥DC
21.如图,已知矩形纸片ABCD,点E 是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则图形中与∠BEG相等的角的个数有
三、解答题:
22.(每小题4分,共8分)计算、求值.
(1)已知:(x+5)2=16,求x; (2)计算: .
23.(本题8分)操作与探究
(1)如图,已知点A,B的坐标分别为(0,0),(4,0),将△ABC绕点A按逆时针方向旋转90得到△AB′C′.
①画出△AB′C′;
②点C′的坐标 .
(2)如图,在平面直角坐标系中,函数 的图象 是第一、三象限的角平分线.
实验与探究:由图观察易知A(0,2)关于直线 的对称点 的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线 的对称点 、 的位置,并写出它们的坐标: 、 ;
归纳与发现:结合图形观察以上三组点的坐标,
你会发现:坐标平面内任一点
P(m,-n)关于第一、三象限的角平
分线 的对称点 的坐标为 ;
24.(本题7分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计表及如图所示的统计图.
零花钱数额(元) 5 10 15 20
学生人数(个) a 15 20 5
请根据图表中的信息回答以下问题.
(1)求a的值;
(2)求这50名学生每人一周内的零花钱数额的众数和平均数,中位数.
25.(本题6分)如图,在△ABC中,D是BC上的点,O是AD
的中点,过A作BC的平行线交BO的延长线于点E,则四边
形ABDE是什么四边形?说明你的理由。
26.(本题6分)已知:如图,在矩形OABC中,边OA、
OC分别在 x、y轴上,且A(10,0),C(0,6).
点D在BC边上,AD=AO.
(1)试说明OD平分∠CDA;
(2)求点D的坐标;
27.(本题7分)已知:如图,O正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于
点G,连结OG.
(1)说明:△BCE≌△DCF;
(2)OG与BF有什么位置关系?说明你的结论;
28.(本题8分)已知:如图,平面直角坐标系 xOy中,直线
与直线 交于点A(-2,4)。
(1)求直线 的解析式;
(2)若直线 又与另一直线 交于点B,
且点B的横坐标为-4,求直线AB的解析式和△ABO
的面积。
29.(本题8分)某通讯公司推出①、②两种通讯收费方式供用户
选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),
月租费是 元;
(2)分别求出①、②两种收费方式中y与自变量
x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实
惠的选择建议.
一、填空(每题2分)
1、3;-3; 2、四;5 3、2;3 4、-3;-2 5、-1;减少 6、30o;80o
7、6;20 8、×104 9、y=-3x+5 10、20 11、75 o 12、18
二、选择
13、A 14、C 15、A 16、D 17、B 18、C 19、B 20、D 21、B
三、22、(1) (2分) (4分,对一个给1分)
(2)原式=4-2-3(3分)= -1 (4分)
23.(1)①略(2分)②点C′(-2,5)(4分)
(2)(2) ①如图: , (2分) ②(-n,m) (4分)
24、(1) 总人数50 所以a=50-15-5-20=10 (1分)
(2)本周内有20人的零花钱是15元,出现次数最多,所以众数是15;(3分) =12。(5分)中位数是(7分)
25、四边形ABCD是平行四边形。(1分)△AOE≌△DOB(3分)得AE=BD(4分)
∵AE∥BD,∴四边形ABDE是平行四边形。(6分)
26.(1)在矩形OABC中,OA//BC ∠CDO=∠DOA(1分)又由AD=AO得∠ADO=∠DOA,(2分)
∠CDO=∠ADO(3分)
(2)在Rt△ABD中,BD2=AD2-AB2 BD=8(4分)CD=2 (5分) D(2,6)(6分)
27、(1)因为四边形ABCD是正方形,所以BC=DC(1分), ∠DCB=∠DCF=90°(2分),而CF=CE,则△BCE≌△DCF(3分).
(2) (4分)由(1)知△BCE≌△DCF,所以∠CDF=∠CBE,且∠CEB=∠DEG,则∠DGE=∠BCE=90°,(5分)又因为BE平分∠DBC,所以GF=GD.(6分)而O正方形ABCD的中心,则OG是△DBF的中位线,所以 .(7分)
28.解:(1)把x=-2,y=4代入 ,得4=-2m,m=-2(1分), (2分)
(2)把x=-4代入y=2x,y=-8 B(-4,-8)(3分)
因为直线 过A(-2,4),B(-4,-8)
所以 k=6,b=16 y=6x+16, (5分,求对一个k、b的值给1分)
设AB与x轴交于点C,在y=6x+16中,令y=0, 得x= (6分)
S△ABO= S△ACO +S△BCO= (8分)(梯形分割法参照给分)
29、解:(1)①(1分);30(2分)
(2)设y有=k1x+ b,y无=k2x,由题意得 (3分)b=30(4分) (5分)
故所求的解析式为y有=; y无=.
(3)由y有=y无,得,解得x=300;
当x=300时,y=60.(6分)
故由图可知当通话时间在300分钟内,选择通话方式②实惠(7分);当通话时间超300分钟,选择通话方式①实惠(8分)
火星的星星
仔细读题,后难先易。驱除杂念,循规蹈矩。遭遇难题,冷静梳理。认真检查,多多有益。祝你八年级数学期末考试成功!我整理了关于人教版八年级上数学期末考试试卷,希望对大家有帮助!
一、选择题(本题共10个小题,每小题3分,共30分)
1.﹣ 的相反数是()
B.﹣2 C. D.﹣
2.下列计算正确的是()
﹣9ab=10ab
C.﹣2x2﹣2x2=0 ﹣3y=2y
3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()
×105 ×106 ×107 ×104
4.下列方程中是一元一次方程的是()
﹣5=0 ﹣y=3 ﹣14=2 D. ﹣2=3
5.用平面去截五棱柱,在所得的截面中,不可能出现的是()
A.八边形 B.四边形 C.六边形 D.三角形
6.下列说法中错误的是()
A.有理数可以分为正有理数、负有理数和零
的相反数等于它本身
既不是正数也不是负数
D.任何一个有理数的绝对值都是正数
7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()
8.如图所示,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB等于()
° ° ° °
9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()
B.﹣6 D.﹣2
10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()
A.(1+50%)x•80%﹣x=8 •80%﹣x=8
C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8
二、填空题(本大题共5个小题,每小题3分,共15分)
11.为了调查一批灯泡的使用寿命,一般采用(选填抽样调查或普查)的方式进行.
12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y=.
13.已知关于x的方程3a+x= 的解为2,则a的值是.
14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有个.
15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是.
三、解答下列各题(共20分,答案写在答题卡上)
16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣ )
(2)计算:(1 + ﹣)×(﹣24)+(﹣1)2017﹣|﹣2|3.
17.(1)解方程: =1﹣
(2)先化简,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.
四、解下列各题(共22分)
18.(1)如图所示为一几何体的三视图:
①写出这个几何体的名称;
②画出这个几何体的一种表面展开图;
③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.
(2)方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,求a的值.
19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求nm+mn的值.
(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.
①若CE=8,求AC的长;
②若C是AB的中点,求CD的长.
五、解下列各题(20题6分,21题7分,共13分)
20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年达到“优”和“良”的总天数.
21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.
(1)两台复印机同时复印,共需多少分钟才能印完?
(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?
(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?
一、选择题(本题共10个小题,每小题3分,共30分)
1.﹣ 的相反数是()
B.﹣2 C. D.﹣
【考点】相反数.
【分析】根据只有符号不同的两个数叫做互为相反数解答.
【解答】解:﹣ 的相反数是 .
故选C.
2.下列计算正确的是()
﹣9ab=10ab
C.﹣2x2﹣2x2=0 ﹣3y=2y
【考点】合并同类项.
【分析】直接利用合并同类项法则分别判断得出答案.
【解答】解:A、3a+3b无法计算,故此选项错误;
B、19a2b2﹣9ab无法计算,故此选项错误;
C、﹣2x2﹣2x2=﹣4x2,故此选项错误;
D、5y﹣3y=2y,正确.
故选:D.
3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()
×105 ×106 ×107 ×104
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:181万=181 0000=×106,
故选:B.
4.下列方程中是一元一次方程的是()
﹣5=0 ﹣y=3 ﹣14=2 D. ﹣2=3
【考点】一元一次方程的定义.
【分析】根据一元一次方程的定义得出即可.
【解答】解:A、是一元一次方程,故本选项正确;
B、不是一元一次方程,故本选项错误;
C、不是一元一次方程,故本选项错误;
D、不是一元一次方程,故本选项错误;
故选A.
5.用平面去截五棱柱,在所得的截面中,不可能出现的是()
A.八边形 B.四边形 C.六边形 D.三角形
【考点】截一个几何体.
【分析】用一个平面截一个几何体得到的面叫做几何体的截面,依此即可求解.
【解答】解:用一个平面去截五棱柱,边数最多的截面是七边形.
故选A.
6.下列说法中错误的是()
A.有理数可以分为正有理数、负有理数和零
的相反数等于它本身
既不是正数也不是负数
D.任何一个有理数的绝对值都是正数
【考点】有理数;相反数;绝对值.
【分析】根据有理数的含义和分类方法,绝对值的含义和求法,以及相反数的含义和求法,逐一判断即可.
【解答】解:∵有理数可以分为正有理数、负有理数和零,
∴选项A正确;
∵0的相反数等于它本身,
∴选项B正确;
∵0既不是正数也不是负数,
∴选项C正确;
∵任何一个有理数的绝对值是正数或0,
∴选项D不正确.
故选:D.
7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()
【考点】频数(率)分布直方图.
【分析】根据频数分布直方图即可求解.
【解答】解:根据频数分布直方图可知,第二组的频数是18.
故选B.
8.如图所示,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB等于()
° ° ° °
【考点】角平分线的定义.
【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.
【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,
∴∠AOD=∠COD=25°,∠AOB=2∠AOC,
∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,
故选:C.
9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()
B.﹣6 D.﹣2
【考点】整式的加减.
【分析】先将(b﹣c)﹣(d﹣a)变形为(b+a)﹣(c+d),然后将a+b=4,c+d=2代入求解即可.
【解答】解:∵a+b=4,c+d=2,
∴(b﹣c)﹣(d﹣a)
=(b+a)﹣(c+d)
=4﹣2
=2.
故选C.
10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()
A.(1+50%)x•80%﹣x=8 •80%﹣x=8
C.(1+50%)x•80%=8 D.(1+50%)x﹣x=8
【考点】由实际问题抽象出一元一次方程.
【分析】首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.
【解答】解:设每个双肩背书包的进价是x元,根据题意得:
(1+50%)x•80%﹣x=8.
故选:A.
二、填空题(本大题共5个小题,每小题3分,共15分)
11.为了调查一批灯泡的使用寿命,一般采用抽样调查(选填抽样调查或普查)的方式进行.
【考点】全面调查与抽样调查.
【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【解答】解:为了调查一批灯泡的使用寿命,一般采用 抽样调查的方式进行,
故答案为:抽样调查.
12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y=﹣8.
【考点】有理数的混合运算.
【分析】根据有理数的混合运算的运算方法,求出若输入的数x=﹣4,则输出的数y是多少即可.
【解答】解:(﹣4)2÷(﹣2)
=16÷(﹣2)
=﹣8
∴若输入的数x=﹣4,则输出的数y=﹣8.
故答案为:﹣8.
13.已知关于x的方程3a+x= 的解为2,则a的值是﹣ .
【考点】一元一次方程的解.
【分析】把x=2代入方程3a+x= 得出3a+2= ,求出方程的解即可.
【解答】解:把x=2代入方程3a+x= 得:3a+2= ,
解得:a=﹣ ,
故答案为:﹣ .
14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有71个.
【考点】规律型:图形的变化类.
【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.
【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,
第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,
所以第7个图形共有7+64=71个太阳.
故答案为:71.
15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是26.
【考点】一元一次方程的应用.
【分析】由题意可先得到右上角的数为28,由于要求每一行,每一列,及每一对角线上的三个数之和有相同的值,所以中央的数是右上角与左下角的数的平均数,故可求得x的值.
【解答】解:右上角的数为:22+27+x﹣x﹣21=28,
中央数为:(22+28)÷2=25,
故x+27+22=22+25+28,
解得:x=26.
故本题答案为:26.
三、解答下列各题(共20分,答案写在答题卡上)
16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣ )
(2)计算:(1 + ﹣)×(﹣24)+(﹣1)2017﹣|﹣2|3.
【考点】有理数的混合运算.
【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(2)原式利用乘法分配律,乘方的意义,以及绝对值的代数意义计算即可得到结果.
【解答】解:(1)原式=﹣9+25﹣5=11;
(2)原式=﹣32﹣3+66﹣1﹣8=22.
17.(1)解方程: =1﹣
(2)先化简,再求值: (9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.
【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方;整式的加减—化简求值.
【分析】(1)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解;
(2)去括号、合并同类项即可化简,然后根据非负数的性质求得a和b的值,代入化简后的式子即可求值.
【解答】解:(1)去分母,得5(x﹣1)=15﹣3(3x+2),
去括号,得5x﹣5=15﹣9x﹣6,
移项,得5x+9x=15﹣6+5,
合并同类项,得14x=14,
系数化成1得x=1;
(2)原式=3ab2﹣1+7ab2+2﹣2a2b
=10ab2﹣2a2b+1,
∵(a+2)2+|b﹣3|=0,
∴a+2=0,b﹣3=0,
∴a=﹣2,b=3.
则原式=10×(﹣2)×9﹣2×4×3+1=﹣180﹣24+1=﹣203.
四、解下列各题(共22分)
18.(1)如图所示为一几何体的三视图:
①写出这个几何体的名称;
②画出这个几何体的一种表面展开图;
③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.
(2)方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,求a的值.
【考点】由三视图判断几何体;同解方程;几何体的展开图.
【分析】(1)①如图所示,根据三视图的知识来解答;②根据几何体画出这个几何体的一种表面展开图即可;③根据求图形的面积的方法即可得到结果;
(2)根据题意即可得到结论.
【解答】解:(1)①根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱;
②如图所示,
③这个几何体的侧面积=3×10×4=120cm2;
(2)解 [(a﹣ )x+ ]=1得x=﹣ ,
解 ﹣1= 得x= ,
∵方程 [(a﹣ )x+ ]=1和方程 ﹣1= 的解相同,
∴﹣ = ,
∴a= .
19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求nm+mn的值.
(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.
①若CE=8,求AC的长;
②若C是AB的中点,求CD的长.
【考点】两点间的距离;整式的加减.
【分析】(1)根据题意列出关系式,去括号合并后由结果不含有x2,y项,求出m与n的值,代入代数式即可得到结论;
(2)①由E为DB的中点,得到BD=DE=3,根据线段的和差即可得到结论;②由E为DB的中点,得到BD=2DE=6,根据C是AB的中点,得到BC= AB=10,根据线段的和差即可得到结论.
【解答】解:(1)根据题意得:A﹣2B=2x2﹣xy+my﹣8﹣2(﹣nx2+xy+y+7)=(2+2n)x2﹣3xy+(m﹣2)y﹣22,
∵和中不含有x2,y项,
∴2+2n=0,m﹣2=0,
解得:m=2,n=﹣1,
∴nm+mn=﹣1;
(2)①∵E为DB的中点,
∴BD=DE=3,
∵CE=8,
∴BC=CE+BE=11,
∴AC=AB﹣BC=9;
②∵E为DB的中点,
∴BD=2DE=6,
∵C是AB的中点,
∴BC= AB=10,
∴CD=BC﹣BD=10﹣6=4.
五、解下列各题(20题6分,21题7分,共13分)
20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年达到“优”和“良”的总天数.
【考点】条形统计图;用样本估计总体;扇形统计图.
【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;
(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;
(3)利用样本中优和良的天数所占比例乘以一年即可求出达到优和良的总天数.
【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,
∴被抽取的总天数为:12÷20%=60(天);
(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;
表示优的圆心角度数是 360°=72°,
如图所示:
;
(3)样本中优和良的天数分别为:12,36,
一年达到优和良的总天数为: ×365=292(天).
故估计本市一年达到优和良的总天数为292天.
21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.
(1)两台复印机同时复印,共需多少分钟才能印完?
(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?
(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?
【考点】一元一次方程的应用.
【分析】(1)设共需x分钟才能印完,依题意得( + )x=1,解方程即可;
(2)设由A机单独完成剩下的复印任务需要y分钟才能印完,依题意得( + )×30+ =1,求解与13分进行比较即可;
(3)当B机恢复使用时,两机又共同复印了z分钟印完试卷,依题意得( + )×30+ +( + )z=1,求解后加9再与13进行比较
【解答】解:(1)设共需x分钟才能印完,( + )x=1,解得x=36
答:两台复印机同时复印,共需36分钟才能印完;
(2)设由A机单独完成剩下的复印任务需要y分钟才能印完,
( + )×30+ =1,解得y=15>13
答:会影响学校按时发卷考试;
(3)当B机恢复使用时,两机又共同复印了z分钟印完试卷,
( + )×30+ +( + )z=1
解得z=
则有9+<13.
答:学校可以按时发卷考试.
优质考试培训问答知识库