• 回答数

    2

  • 浏览数

    264

Hello,umi酱!
首页 > 考试培训 > 初三上学期数学期末考试

2个回答 默认排序
  • 默认排序
  • 按时间排序

Jingelababy今

已采纳

数学期末考试的脚步声近了,初三的数学基础知识点你都学会了吗?以下是我为你整理的初三上册数学期末试卷,希望对大家有帮助!

一、精心选一选(本大题共8小题,每小题3分,共24分)

1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后排序

正确的是( )

(A)A→B→C→D (B)D→B→C→A (C)C→D→A→B (D)A→C→B→D

2.已知直角三角形的两边长是方程x2-7 x+12=0的两根,则第三边长为( )

(A)7 (B)5 (C) (D)5或

3.已知3是关于x的方程 x2-2a+1=0的一个解,则2a的值是 ( )

(A)11 (B)12 (C)13 (D)14

4.下列命题中错误的( )

(A)一对邻角互补的四边形是平行四边形;

(B)一组对边平行,一组对角相等的四边形是平行四边形;

(C)等腰梯形的对角线相等;

(D)平行四边形的对角线互相平分.

5.如图,在直角坐标系中,直线y=6-x与函数y = (x>0)的图象

相交于点A、B,设点A的坐标为(x1 ,y1),那么长为x1,宽为y1

的矩形的面 积和周长分别为( )

(A)4,12 (B)8,12 (C)4,6 ( D)8,6

6.如果点A(-1, )、B(1, )、C( , )是反比例函数 图象上的三个点,

则下列结论正确的是( )

(A) > > (B) > > (C) > > D) > >

7.在联欢晚会上 ,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳, 谁先抢到凳子谁获胜,为 使游戏公平,凳子最适当的位置在△ABC的( )

(A)三边中线的交点, (B)三条角平分线的交点 ,

(C)三边上高的交点, (D)三边中垂线的交点

8.边长为8cm的正方形纸片ABCD折叠 ,使点D落在BC边

中点E处,点A落在点F处,折痕为MN,则线段CN的

长是( ).

(A)2cm (B)3cm (C)4cm (D)5cm

二、认真填一填:(本大题共8小题,每小题3分,共24分.)

9.已知 是关于x的方程: 的一个解,则2a-1的值是 .

10.在一个有40万人口的县,随机调查了3000人,其中有2130人看中央电视台的焦点访谈节目,在该县随便问一个人,他看焦点访谈节目的概率大约是______________.

11.菱形有一个内角为600,较短的对角线长为6,则它的面积为 .

12.依次连接菱形各边中 点所得到的四边形是 .

13.如图,一几何体的三视图如右:

那么这个几何体是 .

14.用配方法将二次三项式 变形,

结果为 .

15.如图,若将四根木条钉成的矩形木框变为

平行四边形ABCD的形状,并使其面积为矩形

面积的一半,则这个平行四边形的一个最小内角

的值等于 .

16.如图,一个正方形摆放在桌面上,则正方形的边长为 .

三、细心做一做(17题每小题6分共12分18题8分)

17.(1)解方程 (2)解方程

18.(8分)如下图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN .

(1) 试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.

(2) 在图中画出表示大树高的线段.

(3) 若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树的部分.

四 解答题(19题7分、20题9分)

19.(7分)杨华与季红用5张规格相同的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:

当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;

当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).

问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?

20.(9分)如图,已知直线y = - x+4与反比例函数 的图象相交于点A(-2,a),并且与x轴相交于点B.

(1)求a的值.

(2)求反比例函数的表达式.

(3)求△AOB的面积.

五(21、22题各10分)

21.( 10分)将一块正方形铁皮的四个角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长.

22.(10分)已知:如图,在ΔABC中,AB=AC,AD⊥BC,垂足为点D,AN是ΔABC

外角∠CAM的平分线,CE⊥AN,垂足为点E.

(1)求证:四边形ADCE是矩形

(2)当 ΔABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

六(23、24题各10分)

23.(10分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆 的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少元.要使每盆的盈利达到10元,每盆应该植多少株?

24.(10分)如图,在□ABCD中,∠ DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形;

(2)若去掉已知条件的“∠ DAB=60°”,上述的结论还成立吗? 若成立,请写出证明过程;若不成立,请说明理由.

七、(12分)

25.已知反比例函数 和一次函数y=2x-1,其中一次函数的图象经过

(a,b),(a+2,b+k)两点.

(1)求:反比例函数的解析式.

(2) 如图,已知点A在第一象限,且同时在上述两函数的图象上.求点A的坐标.

(3)利用(2)的结果,问在x轴上是否存在点P,使得AOP为等腰三角形.

若存在,把符合条件的P点坐标直接写出来;若不存在,说明理由.

八、(14分)

26.如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积 ;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

一.选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)

二.填空题(本大题共8个小题,每小题3分,满分24分)

12.矩形 13.空心圆柱 14. -100

16.

三题

17.(1)

………………………………3分

…………………………………5分

……………………………………………6分

18.题略 (1)………3分 (2)………6分 (3)………8分(图作对即可)

四题

19.解:不公平,因为杨华胜的概率为 季红胜的概率为不公平. ………3分

应该为:当两张硬纸片上的图形可拼成电灯或小人时,杨华得3分; …5分

当两张硬纸片上的图形可拼成房子或小山时,季红得2分.……7分

20.(本小题9分)

解:(1) 将A(-2,a)代入y=-x+4中,得:a=-(-2)+4 所以 a =6 …………3分

(2)由(1)得:A(-2,6)www.

将A(-2,6)代入 中,得到 即k=-12

所以反比例函数的表达式为: ………6分

(3)如图:过A点作AD⊥x轴于D

因为 A(-2,6) 所以 AD=6

在直线y=-x+4中,令y=0,得x=4

所以 B(4,0) 即OB=4

所以△AOB的面积S= ×OB×AD= ×4×6=12………9分

五题(21、22题各10分)

21题(10分)

解:设原正方形的边长为xcm,则这个盒子的底面边长为x-8

由题意列出方程 4(x-8)2=400 ……………………………………………………5分

整理,得 x2 – 16x -36=0

解方程,得 x1 = 18, x2 = -2 ……………………………………………8分

因为正方形的边长不能为负数,所以x2 = -2舍去 ……………………………9分

因此,正方形的边长为18cm

答:原正方形的边长为18cm …………………………………………………10分

22.题(10分)

(1)证明:∵AB=AC, AD⊥BC

∴∠BAD=∠CAD,即∠CAD = ∠BAC

∵AN是ΔABC外角∠CAM的平分线

∴∠CAN= ∠CAM

∴∠CAD+∠CAN= ∠BAC+ ∠CAM=90°

∴∠DAN=9 0° ……………………………………………3分

又∵CE⊥AN ,AD⊥BC

∴ ∠AEC=90°,∠ADC=90°

∴四边形ADCE是矩形 …………………………5分

∵ΔABC为等腰直角三角形时,AD⊥BC

∴AD= BC=DC ……………………………………8分

∵四边形ADCE是矩形

∴四边形ADCE是一个正方形 ………………10分

六题(23、24题各10分)

23.解:设每盆花苗增加 株,则每盆花苗有 株,平均单株盈利为 元,由题意,

得 . ……………………………………………………5分

化简,整理,的 .

解这个方程,得 ………………………………………… ………9分

答:要使得每盆的盈利达到10元,每盆应该植入4株或5株.………………10分

24.解:(1)证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB=60°

∴∠ADE=∠CBF=60°

∵AE=AD,CF=CB

∴△AED,△CFB是正三角形,ED=BF ………………2分

在 ABCD中,AD=BC,DC∥=AB

∴ED+DC=BF+AB

即 EC=AF ………………3分

又∵DC∥AB

即EC∥AF

∴四边形AFCE是平行四边形 ………………4分

(2)上述结论还成立

证明:∵四边形ABCD是平行四边形

∴DC∥AB,∠DCB=∠DAB,AD=BC,DC∥=AB

∴∠ADE=∠CBF

∵AE=AD,CF=CB

∴∠AED=∠ADE,∠CFB=∠CBF

∴∠AED=∠CFB ………………6分

又∵AD=BC

∴△ADE≌△CBF ………………8分

∴ED=FB

∵DC=AB

∴ED+DC=FB+AB

即EC=FA ………………9分

∵DC∥AB

∴四边形AFCE是平行四边形 ………………10分

七题(12分)

25.题

解:(1)(a,b)(a+2, b+k)代入y=2x+1得:

b=2a-1

b+k=2(a+2)-1

解得 k=4 …………………………………………………………………4分

(2)当 =2x-1得

x 1= - 0 .5 x2=1

∵A点在第一象限

∴点A的坐标为(1,1) ………………………………………………………8分

(3)点p( 1,0)p(2,0)p( ,0) p(- ,0)……………………………12分

八题(14分)

26.解:(1)由已知条件得:

梯形周长为24,高4 ,面积为28.

BF=24÷2 –x=12–x ………………………………2分

过点F作FG⊥BC于G,过点A作AK⊥BC于K

则可得:FG= 12-x5 ×4 …………………………3分

∴S△BEF=12 BE•FG=-25 x2+245 x(7≤x≤10)…5分

(2)存在. ……………………… ……………………………6分

由(1)得:-25 x2+245 x=14 ……………………7分

得x1=7 x2=5(不合舍去)

∴存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.……8分

(3)不存在 .………………………………………………………………………………9分

假设存在,显然是:S△BEF∶SAFECD=1∶2,(BE+BF)∶(AF+AD+DC)=1∶2……… ……11分

则有-25 x2 +165 x = 283

整理得:3x2-24x+70=0

△=576-840<0

∴不存在这样的实数x. ………………………………………………………12分

即不存在线段EF将等腰梯形ABCD的周长和面积,同时分成1∶2的两部分. ……14分

初三上学期数学期末考试

84 评论(10)

晓柚崽崽!

对于九年级数学的复习,需要制定详细的计划,踏踏实实地做好数学期末试题,才能取得好成绩。以下是我为你整理的九年级上册期末考试数学题,希望对大家有帮助!

一、选择题(共8道小题,每小题4分,共32分)

下面各题均有四个选项,其中只有一个是符合题意的.

1. 的相反数是 ( )

A. C. D.

2.已知, 中,∠C=90°,sin∠A= ,则∠A 的度数是 ( )

° ° ° D. 90°

3.若反比例函数 的图象位于第二、四象限内,则 的取值范围是 ( )

A. B. C. D.

4.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为( ).

A. 8

5.如图,D是 边AB上一点,则下列四个条件不能单独判定 的是( )

A. B. C. D.

6.如图,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是 ( )

A. B. C. D.

7.如图,BC是⊙O的直径,A、D是⊙ 上两点,若∠D = 35°,则∠OAC的度数是 ( )

° ° ° °

8.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB边上的一个动点(不与点A、B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示y与x的函数关系的图象大致是 ( )

二、填空题(共4道小题,每小题4分,共16分)

9.如图,在△ABC中,DE∥BC,若DE=1,BC=3,那么△ 与△ 面积的比为 .

10.如图,点A、B、C是半径为3cm的⊙O上三个点,且 , 则劣弧 的长

是 .

11.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,

则∠AED的正弦值等于 .

12.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填

整数之和都相等,则第99个格子中的数为 ,2012个格子中的数为 .

3 a b c -1 2 …

三、解答题(本题共30分,每小题5分)

13.计算:

14.已知抛物线 .

(1)用配方法把 化为 形式;

(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,

抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.

15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.

解:

16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.

求cos∠C.

解:

17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.

解:

18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交AC于E,AC=8,BC=6.求DE的长.

解:

四、解答题(本题共20分,每小题5分)

19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,

此时小明正好站在A处,并测得 ,牵引底端 离地面米,

求此时风筝离地面的高度.

解:

20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).

甲超市.

球 两 红 一红一白 两 白

礼金券(元) 20 50 20

乙超市:

球 两 红 一红一白 两 白

礼金券(元) 50 20 50

(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;

(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.

解:

21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.

(1)求证: 是⊙O的切线;

(2)若 ,求 的长.

证明:

22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.

(1)求半圆O的半径;

(2)求图中阴影部分的面积.

解:

五、解答题(本题共22分,23题7分,24题7分,25题8分)

23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若

(1)求反比例函数和一次函数的解析式;

(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.

解:

24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,

旋转后的矩形记为矩形 .在旋转过程中,

(1)如图①,当点E在射线CB上时,E点坐标为 ;

(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);

(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.

(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.

图① 图② 图③

解:

25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).

(1)求此抛物线的解析式;

(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;

(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.

解:

一、选择题(共8道小题,每小题4分,共32分)

下面各题均有四个选项,其中只有一个是符合题意的.

题 号 1 2 3 4 5 6 7 8

答 案 D C B A C A B C

二、填空题(本题共16分,每小题4分)

题号 9 10 11 12

答案 π 2; -1

三、解答题(本题共30分,每小题5分)

13.计算:

解: 原式= …………………………4分

=

= ………………………………………………5分

14.已知抛物线 .

(1)用配方法把 化为 形式;

(2)并指出:抛物线的顶点坐标是 ,抛物线的对称轴方程是 ,

抛物线与x轴交点坐标是 ,当x 时,y随x的增大而增大.

解(1)

=x2-2x+1-1-8

=(x-1)2 -9.………………………………………………3分

(2)抛物线的顶点坐标是 (1,-9)

抛物线的对称轴方程是 x=1 ……………………………4分

抛物线与x轴交点坐标是(-2,0)(4,0);

当x >1 时,y随x的增大而增大. ………………………………5分

15.解不等式: 4(x+1)≤5x+8,并把它的解集在数轴上表示出来.

解: 去括号,得 4x+4≤5x+8 ……………………………… 1分

移项、合并同类项,得-x≤4……………………………… 3分

系数化为1,得 ≥ ……………………………… 4分

不等式的解集在数轴上表示如下:

………………… 5分

16.如图:已知,梯形ABCD中,∠B=90°,AD∥BC,AB⊥BC,AB=AD=3,BC=7.

求cos∠C.

解:方法一、作DE⊥BC,如图1所示,…………1分

∵AD∥BC,AB⊥BC,AB=AD=3,

∴四边形ABED是正方形.…………………2分

∴DE=BE=AB=3.

又∵BC=7,

∴EC=4,……………………………………3分

由勾股定理得CD=5.…………………………4分

∴ cos∠C= .…………………………5分

方法二、作AE∥CD,如图2所示,……………1分

∴∠1=∠C,

∵AD∥BC,

∴四边形AECD是平行四边形.………………2分

∵AB=AD=3,

∴EC=AD=3,

又∵BC=7,

∴BE=4,……………………………………3分

∵ AB⊥BC,由勾股定理得AE=5. ………………4分

∴ cos∠C= cos∠1= . …………………………5分

17. 以直线 为对称轴的抛物线过点A(3,0)和点B(0,3),求此抛物线的解析式.

解:设抛物线的解析式为 , ………………………………………1分

抛物线过点A(3,0)和B(0,3). ∴ 解得 … ………4分

∴抛物线的解析式为 . ……………………………………5分

18.如图,在 中, ,在 边上取一点 ,使 ,过 作 交 于 , .求DE的长.

解:在 中, ,

.…………………2分

又 ,

.

.

又 ,

.………………………………4分

.

………………………5分

四、解答题(本题共20分,每小题5分)

19.如图,小明在十月一日到公园放风筝,风筝飞到 处时的线长为20米,

此时小明正好站在A处,并测得 ,牵引底端 离地面米,

求此时风筝离地面的高度.

解:依题意得, ,

∴四边形 是矩形 ,…………1分

……………2分

在 中, ……………3分

又∵ , ,

∴ .……………4分

.………………………………………5分

即此时风筝离地面的高度为 米 .

20.甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,抽奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).

甲超市.

球 两 红 一红一白 两 白

礼金券(元) 20 50 20

乙超市:

球 两 红 一红一白 两 白

礼金券(元) 50 20 50

(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;

(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.

解:(1)树状图为:

…………2分

(2)∵去甲超市购物摸一次奖获50元礼金券的概率是P(甲)= = ,…………3分

去乙超市购物摸一次奖获50元礼金券的概率是P(乙)= = ……………………4分

∴我选择去甲超市购物……………………………………………………………………5分

21. 如图, 是⊙O的直径, 是弦, ,延长 到点 ,使得∠ACD=45°.

(1)求证: 是⊙O的切线;

(2)若 ,求 的长.

(1)证明:连接 .

∵ , ,

. ……………………1分

∵ ,

. ……………………2分

又∵点 在⊙O上,

∴ 是⊙O的切线 .……………………3分

(2)∵直径 ,

. …………… 4分

在 中, ,

∴ ,

∵ ,

.……………………5分

22.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.

(1)求半圆O的半径;

(2)求图中阴影部分的面积.

解:(1)解:连结OD,OC,

∵半圆与AC,BC分别相切于点D,E.

∴ ,且 .…………………1分

∵ ,

∴ 且O是AB的中点.

∴ .

∵ ,∴ .

∴ .

∴在 中, .

即半圆的半径为1. ……………………………………….3分

(2)设CO=x,则在 中,因为 ,所以AC=2x,由勾股定理得:

解得 ( 舍去)

∴ . …………………….4分

∵ 半圆的半径为1,

∴ 半圆的面积为 ,

∴ . ….…………………………….5分

五、解答题(本题共22分,23题7分,24题7分,25题8分)

23.如图所示,在直角坐标系中,点 是反比例函数 的图象上一点, 轴的正半轴于 点, 是 的中点;一次函数 的图象经过 、 两点,并交 轴于点 若

(1)求反比例函数和一次函数的解析式;

(2)观察图象,请指出在 轴的右侧,当 时 的取值范围,当 < 时 的取值范围.

解:作 轴于

∴ . ………………………………………1分

∵ 为 的中点,

∴ .

∴ .…………………………………3分

∴ . ∴A(4,2).

将A(4,2)代入 中,得 . . ……………4分

将 和 代入 得 解之得:

∴ .…………………………………………………………………5分

(2)在 轴的右侧,当 时, ………………………6分

当 < 时 >4. ……………………………………………………7分

24. 把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点 顺时针旋转 角,

旋转后的矩形记为矩形 .在旋转过程中,

(1)如图①,当点E在射线CB上时,E点坐标为 ;

(2)当 是等边三角形时,旋转角 的度数是 ( 为锐角时);

(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标.

(4) 如图③,当旋转角 时,请判断矩形 的对称中心H是否在以C为顶点,且经过点A的抛物线上.

图① 图② 图③

解:(1) (4, ) ………………………………………………1分

(2) …………………………………………………………………2分

(3)设 ,则 , ,

在Rt△ 中,∵ ,∴ ,

解得 ,即 .

∴ (4, ). …………………………………………………………4分

(4)设以点 为顶点的抛物线的解析式为 .

把 (0,6)代入得, .

解得, .

∴此抛物线的解析式为 .……………………………………6分

∵矩形 的对称中心为对角线 、 的交点 ,

∴由题意可知 的坐标为(7,2).

当 时, ,

∴点 不在此抛物线上. ………………………………………………7分

25.如图,在平面直角坐标系中,顶点为( , )的抛物线交 轴于 点,交 轴于 , 两点(点 在点 的左侧). 已知 点坐标为( , ).

(1)求此抛物线的解析式;

(2)过点 作线段 的垂线交抛物线于点 , 如果以点 为圆心的圆与直线 相切,请判断抛物线的对称轴 与⊙ 有怎样的位置关系,并给出证明;

(3)已知点 是抛物线上的一个动点,且位于 , 两点之间,问:当点 运动到什么位置时, 的面积最大?并求出此时 点的坐标和 的最大面积.

解:(1)设抛物线为 .

∵抛物线经过点 (0,3),∴ .∴ .

∴抛物线为 . …………2分

(2) 答: 与⊙ 相交. ……………………………………3分

证明:当 时, , .

∴ 为(2,0), 为(6,0).

∴ .

设⊙ 与 相切于点 ,连接 ,

则 .

∵ ,∴∠ABO+∠CBE=90°.

又∵∠ABO+∠BAO=90°,

∴ .∴ ∽ .

∴ .∴ .∴ .…………4分

∵抛物线的对称轴 为 ,∴ 点到 的距离为2.

∴抛物线的对称轴 与⊙ 相交. …………………5分

(3) 解:如图,过点 作平行于 轴的直线交 于点 .

由点A(0,3)点C(6,0)可求出直线 的解析式为 .………………6分

设 点的坐标为( , ),则 点的坐标为( , ).

∴ .

∵ ,

∴当 时, 的面积最大为 .

此时, 点的坐标为(3, ). …………………8分

解答(3)的关键是作PQ∥y轴交AC于Q,以PQ为公共底,OC就是高,用抛物线、直线解析式表示P、Q两点的纵坐标,利用三角形的面积推导出面积与P点横坐标m的函数关系式,

即: .

评分说明:部分解答题有多种解法,以上各题只给出了部分解法,学生的其他解法可参照评分标准给分.

88 评论(9)

相关问答