大LY的小世界
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
爱宇冰冰
方差是各个数据分别与其和的平均数之差的平方的和的平均数举个例子:有1 2 3 4 5 这五个数,求它们的方差:首先求平均数(1+2+3+4+5)/5=3接着求每个数与方差相差多少的平方(1-3)的二次方+(2-3)的二次方+(3-3)的二次方+(4-3)的二次方+(5-3)的二次方=10因为是5个数,所以用10除以5=2
芯是酸的
方差(variance):是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。总体方差计算公式:
为总体方差,为变量,为总体均值,为总体例数。
“方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》 中提出。
S^2= ∑(X-) ^2 / (n-1)[2] S^2为样本方差,X为变量,
为样本均值,n为样本例数。
在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值 ,公式中的E是期望值expected value的缩写,意为“变量值与其期望值之差的平方和”的期望值。 离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2
离散型方差的计算式为:
,其中。
而将上式展开后可得:
绿色拇指跳
举个例子:有1 2 3 4 5 这五个数,求它们的方差:首先求平均数(1+2+3+4+5)/5=3接着求每个数与方差相差多少的平方(1-3)的二次方+(2-3)的二次方+(3-3)的二次方+(4-3)的二次方+(5-3)的二次方=10因为是5个数,所以用10除以5=2 是不是很简单 祝学习进步
大实现家
方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。
方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。
扩展资料:
一、相关历史
“方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。
二、方差的统计学意义
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
参考资料来源:百度百科-方差
小鸡炖蘑菇mimi
方差也是比较数据的一个非常有用的工具举个例子你就明白了以前我们要比较两组数据大小一般用平均数,但是有的时候平均数不能非常准确的表示数据比如 有现在有六只鸡,每三只一组 第一组的鸡的斤数分别是 2.5,3,3.5 第二组的鸡的斤数分别是 1,3,5很显然我们能看出第一组鸡看起来重量的差别不大,第二组鸡的差别就很大,因为鸡本身重量并不大,相差两斤的话一下子就能看出来可是我们发现这两组鸡重量的平均数是一样的,但是这两组鸡却有明显的差别,这是平均数就不能体现二者的差别,所以我们引入了方差的概念用每一个数据和这组数的平均数比较,再计算差的平方和,哪一个大就说明这组数据的差别较大这里面还有一个问题就是为什么要平方,因为每个数和平均数的差有正有负,而我们只关心差的绝对值,但是用绝对值会使计算繁琐,所以用平方
优质会计资格证问答知识库