天使之懿727
九年义务教育三年制初级中学教科书(试用修订本)代数第二册简介 人民教育出版社中学数学室 田载今 《九年义务教育三年制初级中学教科书•代数(试用修订本)》第二册是根据教育部2000年颁发的《九年义务教育全日制初级中学数学教学大纲(试用修订版)》,在《九年义务教育三年制初级中学教科书•代数(试用本)》第二册的基础上修订而成的,供九年义务教育三年制初中二年级全学年使用。这次修订旨在贯彻第三次全国教育工作会议的精神,保持教材原有的重视基础的优点,并使之更加有利于素质教育,更加有利于学生的全面发展,更加有利于培养学生的创新精神和实践能力。 本次修订涉及教学内容的增删、教材结构的调整和教学要求的变化,吸收了部分教材审查委员和特级教师的宝贵意见。2001年经全国中小学教材审定委员会审查通过。 由于《九年义务教育三年制初级中学教科书•代数(试用本)》第二册已为大家所熟悉,下面分两个方面,重点结合本次修订,简介这册教科书。 一、 教学内容、教材结构与教要求的变化 本册教科书共分4章,约需78课时。 (一)第八章“因式分解”,约需19课时 因式分解是式的一种重要变化,它在代数学习中具有基础作用。本章主要内容为因式分解的意义和基本方法。 本次修订中,这章教材内容、结构和要求的变化主要有以下几点。 1.教材中因式分解的基本方法,由原来的4种改为3种,即删去“十字相乘法”,保留提公因式法、运用公式法和分组分解法。教材正文相应由4节改为3节。 2.在分组分解法中增加有关 型式子的分解,并将这类二次项系数为1的二次三项式的解作为一章内容,即由分组分解法得出 并将式子 作为结论直接用于二次项系数为1的二次三项式的分解。 3.在运用公式法中,只保留平方差公式与完全平方公式(共3个公式),删去运用立方和(差)公式 分解因式。 4.限制被分解的因式不超过4项。 5.改进章头的引入方式。提出问题时,注意体现因式分解的作用(可从简化计算、化简代数式等方面入手),从问题中引出因式分解的概念(改变直接给出概念的做法),使学生从这一章开始就认识到学习因式分解是有用的。 6.“读一读 用配方法分解二次三项式”的写法有所改变,突出与完全平方公式的对比,强调配方变形的道理,不涉及十字相乘法。 (二)第九章“分式”,约需19课时 分式是整式之外的另一种有理式,它是初中代数里“式”的学习中的一项重要内容。本章主要内容为分式的概念、基本性质、运算,含有字母的一元一次方程的分式方程。 本次修订中,这章教材内容、结构和要求的变化主要有以下几点。 1.利用因式分解进行约分、通分时,对于因式分解的要求与第八章所作修订同步调整。 2.新增“探究性活动: 型数量关系”作为第9.6节。 这一节按照“观察实验——发现规律——分析数量关系”的方式展开,包括三部分。 第1部分“讨论一个实际问题”,通过对一个具体例子的分析引出 型数量关系。这个例子如下。 “有一大捆粗细均匀的电线,现要确定其总长度,怎样做比较简捷(使用的工具不限,可以从中先取一小段作为检验样品)?” 第2部分“讨论矩形的面积与长、宽的数量关系”,结合几何图形的度量对数量关系进行较深入的讨论。 第3部分“讨论一般的 型的数量关系”;对前面结合具体问题所得的讨论结果作出推广,主要分析以下问题。 (1) 的等价变形 (2) 中,当 阿a为定值时, b与 c 成反比;当b(或c)为定值时, a与c(或b)成正比; (3) 中, 或 ; (4)发现 型数量关系的例子。 在这一节中安排了多个思考问题,要求学生围绕这些问题进行探究活动。这种安排是新的尝试,目的在于加强培养探索发现问题规律的能力。 3.在分式的乘方之后,增加了“整数指数幂的运算”,归纳出三条运算性质: (1) ; (2) ; (3) 。 将正整数指数幂的5条运算性质进一步以概括、简约和推广 4.将分式方程中分式的个数限制为不超过2个,加强利用分式方程解应用题的内容。 (三)第十章“数的开方”,约需12课时 开方是乘方的逆运算,也是初二学生新接触的一种代数运算。本章主要内容为平方根、立方根和实数概念,以及用计算器求平方根和立方根。 本次修订中,这章教材内容、结构和要求的变化主要有以下几点。 1.用计算器求平方根作为正文内容,突出先进的计算工具的使用。把用算表求方根列为附录,供尚无条件使用计算器的学校使用。 2.删去“读一读 怎样用笔算开平方?”,换为有关无理数的发现的数学史内容“读一读为什么说 不是有理数?”。 3.对有关实数的运算律予以适当强调。 (四)第十一章“二次根式”,约需22课时 通过学习这章,学生对式的认识从有理式扩大到无理式,这为进一步学习二次方程打下了基础。 本次修订中,这章教材内容、结构和要求的变化主要有以下几点。 1. 作为选学内容,加“*”号,相关题目作相应处理。 2.降低分母有理化题目的难度,限定题目中分母只含有一个二次根式。 在全书最后增加了“附录三 部分中英文名词对照表”,将一些基本数学名词用中文和英文对照列出,希望这样做能有助于学生今后学习专业外语。 二、由教材变化所想到的数学建议 (一)注重基础,控制难度 本册书以代数中的式和数的内容为主。这些内容都属于基础概念和基本 方法范畴,是学习代数必不可少的基础。从本次大纲和教科书的修订可以看出,初中数学的教学内容比以往更加强调基础知识和基本能力。因式分解的方法中只保留了最基本的三种,删去了相对而言技巧性较强且应用范围又仅限于二次三项式(或可化为二次三项式的式子)的十字相乘法;运用公式分解因式的内容只突出三个公式的作用;增加了“整数指数幂的运算”等新的变化,都体现了上述意图。学习内容的难度也进一步得到控制,这表现在“限制被分解的因式不超过4项”,“分式方程中分式的个数限制不超过2个”,“分母有理化的题目限定分母里只含有一个二次根式”等处。这样做的目的并非单纯地降低要求,更在于使学生能集中精力掌握好基础。 因此,建议教学中要突出重点,切实在基础内容上下工夫,切忌不注意学生实际提高题目难度。 (二)加强探究能力的培养 引导学生探究问题、发现规律,是培养创新精神和实践能力的重要途径。 本册教科书新增的9.6节“探究性活动: 型数量关系”,恰是为此而设的。这种题材的内容,对于教材编写和实际教学都是新课题,需要不断认真实践和总结。这里谈谈教材编者的一些建议,供教师参考。 本节教材安排在学习了有关分式的概念、性质和运算之后,旨在通过讨论一种常见的数量关系类型 ,一方面加强学生对于这种类型的数量关系的理解以及灵活运用所学知识进行式子变形的能力;另一方面培养学生从数学角度探究实际问题的能力。对于后者应予充分重视。 1. 9.6节先以一个实际问题作引子,希望能通过它引起讨论兴趣。这是一个开放性问题,解决它的方法不止一种。为使方法简捷,就需要对问题认真分析,特别是分析其中的数量关系。教科书提示学生思考电线的总质量 ,总长度 和单位长度的质量 三者之间的数量关系,这既有利于找出简捷的解决方法,又可以自然地引出本节的主题。因此,教学中适时地采取启发诱导的方式进行提示,可以达到较好效果,激发学生进行主动探究。在本节的第3部分中,又对这个实际问题重新提及。教学中应注意前后呼应。 2. 型数量关系是普遍存在的,教科书采用由“特殊”到“一般”的讨论方式。这一节的第2部分讨论特殊的对象,即矩形这种常见几何图形,讨论它的面积A与长 、宽 的数量关系。这三者之间存在的 关系是众所周知的。教科书在这一节的2.1和2.2两处设计了一系列问题,引导学生进一步发现隐含于 中的其他数量关系,即式子变形和正、反比关系等。在这些问题的讨论中,应提醒学生在认真完成有关填空后,注意观察、比较有关数据和图形,通过归纳观察结果得出结论,并注意对结论进行验证,充分利用好矩形这一典型例子。 3. 这一节的第3部分讨论一般的 型的数量关系。有了第2部分作基础,第3部分的主要任务是推广。教科书在3.1处安排了让学生举出 型数量关系的例子,这对于培养学生从实际问题中抽象出数量关系非常有益。教科书在3.2处通过4个问题,引导学生探究一般的 型的数量关系。这4个问题涉及到零因子、式子变形、正(反)比关系等,它们都是隐含于 中的数量关系。对这些问题的探究,可以加强学生深入分析数学解析表达式的含义的能力。 4. 教学时应注意要求学生先独立思考,经探究得出解答后再看教科书中的参考答案。如果学生自己所得答案与参考答案不同,应引导学生考虑究竟怎样解答更合理,而不应不弄清道理不盲从。 5. 教学地应结合实际灵活地处理教科书中的内容,不要拘泥于教科书中对于探究活动过程的设计。这是因为教科书中的安排设计仅是探究这个问题的一种方案,不一定适合不同的教学实际环境。教学中应针对学生的情况,采取最能发挥学生积极性的方案,激发探究的热情,使这种学习形式真正达到生动、活泼、主动的效果。 (三)重视运算能力的培养 数学的学习和应用都离不开运算,数学中的运算不仅有数的计算,而且包括其他对象(例如代数式)依照一定法则所进行的演变。本册教科书中“数的开方”是数的计算,而“分式”、“二次根式”两章的很多内容是代数式的运算。对于数学运算能力的培养训练,要随着科技发展和社会时步而提高。过去人们为了提高运算效率创作了各种算表,使之成为重要的计算工具。然而,随着计算工具的进步和计算技术的发展,原有的算表多已落伍,计算机和计算器的出现使运算发生了根本的变化,这种进步必然要对数学学习产生重大影响。本册教科书第十章中,将用计算器求平方根和立方根作为正文,而将查平方根表和立方根表列入附表,就是适应上述变化之举。教学中也应跟上变化,使学生切实掌握计算器的有关使用方法,并注意充分发挥计算器的其他有关功能,使之成为学习的有力工具。 计算工具的发展可以提高运算效率,但不能完全替代人脑工作。 对于运算的学习应随着计算工具的发展而提高水平,而不应使人的运算能力退化。这就是说,随着学生从大量的重复性的简单运算操作中得到解放,他们应更注重运算的基本道理,更善于使运算合理、简捷。本册教科书中和八章章头问题的引入,第九章将正整指数幂的5条运算性质进一步加以概括、简约和推广,第十章“读一读”内容的更换等都体现了上述要求的提高。
晶莹剔透0702
初中二年级时学的内容。
中考数学因式分解的9种方法:
一、运用公式法
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a^2-b^2=(a+b)(a-b)、a^2+2ab+b^2=(a+b)^2、a^2-2ab+b^2=(a-b)^2。如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
二、平方差公式
1、式子:a^2-b^2=(a+b)(a-b)。
2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
三、因式分解
1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2、因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式
把乘法公式(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2反过来。就可以得到:a^2+2ab+b^2=(a+b)^2和a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
五、分组分解法
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)。
六、提公因式法
在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式。
七、分式的乘除法
分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3。
八、分数的加减法
通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
九、含有字母系数的一元一次方程
一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a≠0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
优质会计资格证问答知识库