• 回答数

    5

  • 浏览数

    292

云中子的小白
首页 > 会计资格证 > 中级会计师考试插值法

5个回答 默认排序
  • 默认排序
  • 按时间排序

洋葱吵大肠

已采纳

你说的是财务管理中算内含报酬率的一种方法吗?这个原理是比例法。也就是说先取一个小数,再取一个大一点的数,确定结果在两个试算数字之间,在用比例法计算。具体公司可以看财务管理或者管理会计的书,应当很清楚。

中级会计师考试插值法

96 评论(9)

烽火馋眠

求实际利率是要用内插法(又叫插值法)计算的。“内插法”的原理是根据比例关系建立一个方程,然后,解方程计算得出所要求的数据。例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,会计考试时如用到年金现值系数及其他系数时,会给出相关的系数表,再直接用内插法求出实际利率。建议学习一下财务成本管理的相关内容。 以教材的例题为例:59×(1+r)^-1+59×(1+r)^-2+59×(1+r)^-3+59×(1+r)^-4+(59+1250)×(1+r)^-5=1000(元)这个计算式可以转变为59×(P/A,r,5)+1250×(P/F,r,5)=1000当r=9%时,59×3.8897+1250×0.6499=229.4923+812.375=1041.8673>1 000元当r=12%时,59×3.6048+1250×0.5674=212.6832+709.25=921.9332<1000元因此,现值 利率1041.8673 9%1000 r921.9332 12%(1041.8673-1000)/(1041.8673-921.9332)=(9%-r)/(9%-12%)这里相当于数学上相似三角形的相关比例相等列的等式。解之得,r=10%.

273 评论(10)

虫子不乖

年金的现值计算公式为:P=A*(P/A,i,n),已知A=59000,n=5,(P/A,i,n)为年金现值系数;复利现值计算公式为:P=F*(1+i)^-n,已知F=1250000,n=5,(1+i)^-n为复利现值系数,举个例子,先假设i也就是r为5%,对照那两张系数表代进去看,发现比1000000大了,第二次假设i=15%,算出来比1000000小了,说明在i在5%—15%之间,然后在插个值进去缩小区间,最后的出正确的数10%。

119 评论(14)

廖小可可

插值法的原理及计算公式如下图,原理与相似三角形原理类似。看懂下图与公式,即使模糊或忘记了公式也可快速、准确地推导出来。

数学插值法称为“直线插入法”,原理是,如果a(I1,B1)和B(I2,B2)是两点,那么P(I,B)点在由上述两点确定的直线上。在工程中,I通常介于I1和I2之间,所以p介于a和B点之间,所以称为“线性插值”。

数学插值表明,P点反映的变量遵循ab线反映的线性关系。

上述公式很容易得到。A、 那么B和P是共线的

(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=通过变换得到的直线斜率。

扩展资料:

内插法在财务管理中应用广泛,如在货币时间价值计算中,计算利率i,计算年限n;在债券估值中,计算债券到期收益率;在项目投资决策指标中,计算内部收益率,中级和CPA教材中没有给出插值原理,下面是一个例子来说明插值在财务管理中的应用。

在内含报酬率中的计算

内插法是计算内部收益率的常用方法,内部收益率是指投资项目的净现值等于零时的折现率,通过计算内部收益率,可以判断项目是否可行,如果计算出的内部收益率高于必要的收益率,则该方案是可行的。

参考资料来源:

百度百科-插值法

182 评论(11)

土豆炒洋芋G

插值法又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。举个例子:年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。例: P/A=2.6087=(P/A,i,3)查年金现值系数表可知r P/A8% 2.5771所求r 2.60877% 2.6243插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)求得 r=7.33%以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。插入法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。

271 评论(10)

相关问答