微微的辣
公务员考试排列组合的基本计数原理有两个,加法原理和乘法原理。下面对于这两点进行一一解释:加法原理即分类时采用的计数方法。也就是说,当完成一件事情,分成几类情况时,把每类方法数相加得到的就是总方法数。乘法原理即分步时采用的计数方法。也就是说,当完成一件事情,分成先后几步时,把每步方法数加乘得到的就是总方法数。那么什么是分类和分步?很多人在这里很多都会搞不清楚。咱们举个例子来看一下计数原理在公务员考试行测中考察频率还算是比较高的。需要注意好的就是发现公务员考试题目的特征,分清楚分类分步,不要因为粗心导致无谓的失分。如果从南京到上海,那么可以坐飞机,可以坐高铁,可以坐汽车,也可以自驾,此时称为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾游也有1种路线,那么从南京到上海,所有的方法数就是3+4+2+1=10种方法。如果从南京到上海,上海到广州,广州再回南京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从南京到上海有3种方法,上海到广州到4条路线,广州再回南京也有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成此事。第一个例子中,想从南京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完成这个行程,即分类当中的每一类,都可以独立完成整个事情。第二个例子中,南京到上海,上海到广州,广州再回南京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步当中的任何一步,都不能独立完成此事。计数原理在公务员考试行测中考察频率还算是比较高的。需要注意好的就是发现题目的特征,分清楚分类分步,不要因为粗心导致无谓的失分。加油!更多关于公务员考试的备考技巧,备考干货,新闻资讯等内容,小编会持续更新。
莫奈小兔
说起行测中的排列组合问题对于各位考生来说可谓熟悉又陌生,熟悉的是在高中的数学学习中多多少少有所接触,陌生的是这类问题即使学过很多遍也是吃不透抓不准,中公教育专家在此为各位考生带来排列组合问题全面解析。一、什么是排列组合问题排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两个计数工具。二、两个计数原理1、加法原理:所谓加法原理是指在完成一件事情的时候,需要将这件事情划分成若干类别,若每个类别中的方法可以独立完成这件事情,且分类没有重复和遗漏的时候,则完成这件事情的总方法数即是每一类别方法数的加和。例1:从甲地到乙地只能乘坐高铁、飞机或长途汽车,每天高铁有7趟,航班有4趟,长途汽车5趟,则从甲地到乙地每天有多少种不同的方式?中公解析:按照加法原理,每天从甲地到乙地的不同方式可以按照交通工具不同分成3类:乘坐高铁、乘坐飞机、乘坐长途汽车,这3个类别各有7、4、5种不同方式,则共有7+4+5=16种不同的方式从甲地到乙地。2、乘法原理:所谓乘法原理是指在完成一件事情的时候,需要将这件事情分成若干个步骤,若每一个步骤内的方法数刚好完成这个步骤,所有步骤实施完恰好完成这件事情,则完成这件事情的总方法数即是每一步骤方法数的乘积。例2:从甲地去丙地必须经过乙地中转,从甲地去乙地有2列火车,3趟长途大巴,从乙地去丙地有4列火车,2趟长途大巴,则从甲地去丙地共有多少种不同的方式?中公解析:按照乘法原理,从甲地去丙地必然需要分成两步:第一步从甲地到乙地,第二步从乙地到丙地,从甲地到乙地共有2+3=5种不同方式,从乙地到丙地共有4+2=6种不同方式,则共有5×6=30种不同的方式从甲地去丙地。简单来讲我们可以将乘法原理理解为分类相加的计数思维,将加法原理理解为分步相乘的计算思维。计数过程中选择分类还是分步的核心区别就是考虑是否能够独立完成这件事情。需要注意的是在考虑计数问题的时候有时只需使用到其中一个计数原理,如例1所示;但有时两个计数原理都会被用到,如例2所示。三、排列与组合排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会迎刃而解。
爱吃甜的小马
姑妄言之。我能理解第一个,但认为第三个或许是错误的。第一个的道理在于,先不考虑老人问题,直接分配,就是C83ⅹC53xC22但是,由题面可知,老人不能在同一组,所以这样就计算多了,需要把多增加的倍数去掉。老人只有两种情况,一种是在一组,一种是不在一组,不论那种情况,从排列组合的角度来说,都相当于给老人以次序,不得不按次序选人,即排列。2个人的排列就是A22,所以就是第一条的样子。第三个,我认为或许是错的。应该是C63xC33xC22
吃货如影随形
您好,中公教育为您服务。公务员考试无论是国家公务员考试或者河南省公务员考试以至于各地的事业单位考试,官方都不发布考试真题,河南中公教育官网专门开辟了一块版块放置历年真题和全真模拟试题,了解最新时事,考试动态,您可以登录中公教育官网,查看历年的部分考试真题以及考试动态。祝您考试顺利。如有疑问,欢迎向中公教育企业知道提问。
挂在盒子上723
说起行测中的排列组合问题对于各位考生来说可谓熟悉又陌生,熟悉的是在高中的数学学习中多多少少有所接触,陌生的是这类问题即使学过很多遍也是吃不透抓不准,中公教育专家在此为各位考生带来排列组合问题全面解析。
一、什么是排列组合问题
排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。
例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。
要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两个计数工具。
二、两个计数原理
1、加法原理:所谓加法原理是指在完成一件事情的时候,需要将这件事情划分成若干类别,若每个类别中的方法可以独立完成这件事情,且分类没有重复和遗漏的时候,则完成这件事情的总方法数即是每一类别方法数的加和。
例1:从甲地到乙地只能乘坐高铁、飞机或长途汽车,每天高铁有7趟,航班有4趟,长途汽车5趟,则从甲地到乙地每天有多少种不同的方式?
中公解析:按照加法原理,每天从甲地到乙地的不同方式可以按照交通工具不同分成3类:乘坐高铁、乘坐飞机、乘坐长途汽车,这3个类别各有7、4、5种不同方式,则共有7+4+5=16种不同的方式从甲地到乙地。
2、乘法原理:所谓乘法原理是指在完成一件事情的时候,需要将这件事情分成若干个步骤,若每一个步骤内的方法数刚好完成这个步骤,所有步骤实施完恰好完成这件事情,则完成这件事情的总方法数即是每一步骤方法数的乘积。
例2:从甲地去丙地必须经过乙地中转,从甲地去乙地有2列火车,3趟长途大巴,从乙地去丙地有4列火车,2趟长途大巴,则从甲地去丙地共有多少种不同的方式?
中公解析:按照乘法原理,从甲地去丙地必然需要分成两步:第一步从甲地到乙地,第二步从乙地到丙地,从甲地到乙地共有2+3=5种不同方式,从乙地到丙地共有4+2=6种不同方式,则共有5×6=30种不同的方式从甲地去丙地。
简单来讲我们可以将乘法原理理解为分类相加的计数思维,将加法原理理解为分步相乘的计算思维。计数过程中选择分类还是分步的核心区别就是考虑是否能够独立完成这件事情。需要注意的是在考虑计数问题的时候有时只需使用到其中一个计数原理,如例1所示;但有时两个计数原理都会被用到,如例2所示。
三、排列与组合
排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。
相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会迎刃而解。
优质公务员考试问答知识库