• 回答数

    5

  • 浏览数

    229

papapaopao
首页 > 公务员考试 > 公务员考试需要掌握的数列

5个回答 默认排序
  • 默认排序
  • 按时间排序

天天~甜甜

已采纳

主要测查考生理解、把握事物间量化关系和解决数量关系问题的技能,主要涉及数字和数据关系的分析、推理、判断、运算等。数量关系有两种题型。第一种题型:数字推理。每道题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出最合适、最合理的一个来填补空缺项,使之符合原数列的排列规律。数字推理必备知识:熟悉等差数列、等比数列、求和数列、乘积数列、幂数列、组合数列、分数数列、质数数列、合数数列、根式数列、九宫图等。第二种题型:数学运算每道题给出一道算术式子,或者表达数量关系的一段文字,要求考生熟练运用加、减、乘、除等基本运算法则,利用基本的数学知识,准确、迅速地计算出结果。数学运算必备知识:四则运算、基本题型对应技巧、基本运算、常用的速算方法、路程问题、工程问题、鸡兔同笼、植树问题、方阵问题、浓度问题、比例问题、牛吃草问题、排列组合、概率问题、利润问题、集合问题、几何问题、分段问题等。第三部分:判断推理主要测查考生对各种事物关系的分析推理能力,涉及对图形、语词概念、事物关系和文字材料的理解、比较、组合、演绎和归纳等方面。本部分有四种题型。第一种题型:图形推理。每道题给出一套或两套图形,要求考生认真观察找出图形排列的规律,选出符合规律的一项。图形推理题必备要点:素、数、形、位四大类基本考点。具体为——元素变化、数量变化、笔画类、叠加类、求同类、求异类、区域变化、移动类、九宫图、空间还原、奇偶考查、旋转、平移等。第二种题型:定义判断。每道题先给出一个概念的定义,然后分别列出四种情况,要求考生严格依据定义选出一个最符合或最不符合该定义的答案。定义判断用“属”和“种差”的方法解答即可。第三种题型:类比推理。给出一对相关的词,然后要求考生在备选答案中找出一对与之在逻辑关系上最为贴近或相似的词。类比推理用“造句法”解决。第四种题型:逻辑判断。每道题给出一段陈述,这段陈述被假设是正确的,不容置疑的。要求考生根据这段陈述,选择一个最恰当答案,该答案应与所给的陈述相符合,应不需要任何附加说明即可以从陈述中直接推出。逻辑判断用正常的生活逻辑即可。逻辑判断常考规律:支持反对型(加强削弱型)、归纳型(推出型)、假设型(前提型)、解释型、评价型、逻辑应用型等.第四部分:资料分析主要测查考生对各种形式的文字、图形、表格等资料的综合理解与分析加工的能力,这部分内容通常由数据性、统计性的图表数字及文字材料构成。针对一段资料一般有3~5个问题,考生需要根据资料所提供的信息进行分析、比较、计算,从四个备选答案中选出符合题意的答案。本部分的考查以文字、图形、表格三种资料形式出现。近几年考综合类的多,即:图、表、文字相结合考查。解答本部分题最关键的是:速度!所以要有很好技巧。

公务员考试需要掌握的数列

234 评论(9)

西西里的蘑菇

1、数字推理

数字推理知识:熟悉等差数列、等比数列、求和数列、乘积数列、幂数列、组合数列、分数数列、质数数列、合数数列、根式数列、九宫图等。

2、数学运算数学运算知识:四则运算、基本题型对应技巧、基本运算、常用的速算方法、路程问题、工程问题、鸡兔同笼、植树问题、方阵问题、浓度问题、比例问题、牛吃草问题、排列组合、概率问题、利润问题、集合问题、几何问题、分段问题等。

3、判断推理

数学运算知识:图形推理、定义判断、类比推理、逻辑判断

4、资料分析

针对一段资料一般有3~5个问题,考生需要根据资料所提供的信息进行分析、比较、计算,从四个备选答案中选出符合题意的答案。

备考公务员首先要了解考试大纲,然后公务员的书看一下,或者是行政能力测试的真题,基本都不太难,最高也就是高中的排列组合,最低有小学的鸡兔同笼,看你所谓的难是什么水平。时间一定要把握好,公务员不要求身高,除非报公安部门,基本上健康就行了。

272 评论(8)

吃客5588

第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。 注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉) 第二步思路A:分析趋势 1, 增幅(包括减幅)一般做加减。 基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。 例1:-8,15,39,65,94,128,170,() A.180 B.210 C. 225 D 256 解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。 总结:做差不会超过三级;一些典型的数列要熟记在心 2, 增幅较大做乘除 例2:0.25,0.25,0.5,2,16,() A.32 B. 64 C.128 D.256 解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256 总结:做商也不会超过三级 3, 增幅很大考虑幂次数列 例3:2,5,28,257,() A.2006 B。1342 C。3503 D。3126 解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D 总结:对幂次数要熟悉 第二步思路B:寻找视觉冲击点 注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引 视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。 例4:1,2,7,13,49,24,343,() A.35 B。69 C。114 D。238 解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。 总结:将等差和等比数列隔项杂糅是常见的考法。 视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。 20 5 例5:64,24,44,34,39,() 10 A.20 B。32 C 36.5 D。19 解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5 总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。 视觉冲击点3:双括号。一定是隔项成规律! 例6:1,3,3,5,7,9,13,15,(),() A.19,21 B。19,23 C。21,23 D。27,30 解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C 例7:0,9,5,29,8,67,17,(),() A.125,3 B。129,24 C。84,24 D。172,83 解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1. 总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计 视觉冲击点4:分式。 类型(1):整数和分数混搭,提示做乘除。 例8:1200,200,40,(),10/3 A.10 B。20 C。30 D。5 解:整数和分数混搭,马上联想做商,很易得出答案为10 类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。 例9:3/15,1/3,3/7,1/2,() A.5/8 B。4/9 C。15/27 D。-3 解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27 例10:-4/9,10/9,4/3,7/9,1/9 A.7/3 B 10/9 C -5/18 D -2 解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得 14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18 视觉冲击点5:正负交叠。基本思路是做商。 例11:8/9, -2/3, 1/2, -3/8,() A 9/32 B 5/72 C 8/32 D 9/23 解:正负交叠,立马做商,发现是一个等比数列,易得出A 视觉冲击点6:根式。 类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内 例12:0 3 1 6 √2 12 ( ) ( ) 2 48 A. √3 24 B.√3 36 C.2 24 D.2 36 解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A 类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b) 例13:√2-1,1/(√3+1),1/3,() A(√5-1)/4 B 2 C 1/(√5-1) D √3 解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4. 视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。 例14:2,3,13,175,() A.30625 B。30651 C。30759 D。30952 解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651 总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。 视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。 例15:1.01,1.02,2.03,3.05,5.08,() A.8.13 B。 8.013 C。7.12 D 7.012 解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。 总结:该题属于整数、小数部分各成独立规律 例16:0.1,1.2,3.5,8.13,( ) A 21.34 B 21.17 C 11.34 D 11.17 解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A 总结:该题属于整数和小数部分共同成规律 视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。 例17:1,5,11,19,28,(),50 A.29 B。38 C。47 D。49 解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38. 视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。 例18:763951,59367,7695,967,() A.5936 B。69 C。769 D。76 解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。 例19:1807,2716,3625,() A.5149 B。4534 C。4231 D。5847 解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。 第三步:另辟蹊径。 一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。 变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。 例20:0,6,24,60,120,() A.186 B。210 C。220 D。226 解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。 变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。 例21:2,12,36,80,() A.100 B。125 C 150 D。175 解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。 变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。 例22:1/6,2/3,3/2,8/3,() A.10/3 B.25/6 C.5 D.35/6 解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。 第四步:蒙猜法,不是办法的办法。 有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。 第一蒙:选项里有整数也有小数,小数多半是答案。 见例5:64,24,44,34,39,() A.20 B。32 C 36.5 D。19 直接猜C! 例23:2,2,6,12,27,() A.42 B 50 C 58.5 D 63.5 猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C 正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5 第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。 例24:-4/9,10/9,4/3,7/9,1/9,( ) A.7/3 B.10/9 C -5/18 D.-2 猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。 第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十! 例25:1,2,6,16,44,() A.66 B。84 C。88 D。120 猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。 例26:0.,0,1,5,23,() A.119 B。79 C 63 D 47 猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119 第四蒙:利用选项之间的关系蒙。 例27:0,9,5,29,8,67,17,(),() A.125,3 B129,24 C 84,24 D172 83 猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B 例28:0,3,1,6,√2,12,(),(),2,48 A.√3,24 B。√3,36 C 2,24 D√2,36 猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A

197 评论(10)

cestlavie88

等差数列这个知识点大家应该都不是很陌生,高中已经学过,在国家公务员考试里也经常出现,多数题目是考查最基本的通项公式和求和公式,再进一步就是中项求和公式。本文所讨论的是以上的三个公式在其他数学问题中的运用,中公教育希望给考生快速解题提供帮助。1、等差数列与方阵问题方阵问题在目前国考和省考中是一个较冷的考点,但是在事业单位等考试中还是时常出现。考生在做方阵问题的时候,一般是要了解方阵的一些基本的计算性质,例如:最外层边长的个数=最外层边长×4-4;相邻两层的边长差2个;相邻两层的总数差8个等等,大家注意第二句和第三句表述,如果把这两句话按照等差数列去理解的话,那就是:方阵的边长构成一个公差为2的等差数列;方阵的每一层构成一个公差为8的等差数列,这样再引入等差数列的相关公式,对于解决方阵问题就很有帮助。例1:已知一个空心方阵摆满各种鲜花,一共有8层,最内层有9盆花,请问这个方阵一共有多少盆鲜花?【中公解析】:根据本题的描述,这是一道空心方阵的问题,需要用到方阵的相关结论,本题已知最内层是9盆花,一共有8层,根据结论相邻两层相差8个,即相邻两层构成一个公差为8的等差数列。所以可知这个等差数列第一项是9,项数为8,公差为8,根据基本的通项公式:末项=第一项+(项数-1)×公差,可知最外层=9+(8-1)×8=65,此题是求总数,套用等差数列的基本求和公式:(首项+末项)×项数÷2=(9+65)×8÷2=296。例2:某医院门前有一个大型的方形实心花坛,从外往里按照菊花、月季、菊花、月季……的顺序进行摆放,已知最外层的菊花一共要60盆,假设花盆的大小都一样,那么这个方形花坛中菊花比月季多( )盆。A.28 B.32 C.36 D.40【中公解析】:本题也是一个方阵问题,已知最外层由60盆,方形方阵是一层菊花,一层月季这样去布置,所以相邻两层肯定是一层菊花,一层月季,相差肯定是 8盆,只要求出层数,就能够求出其相差几个8盆,最外层是60,因为是实心方阵,最内层肯定是4盆,代入公式:60=4+(项数-1)×8,可以求出项数是8,那就是四层菊花,四层月季,总数相差4个8,即32。以上两题所体现的就是方阵问题与等差数列的联系,只要熟练掌握,就能快速解题。2、等差数列与和定最值和定最值问题是国考和省考的“常客”,这个知识点如果细分的话分为:同向极值、逆向极值,这两个点里都有等差数列的影子。(1)、同向极值中的运用关于同向极值的描述简单复习一下,什么是同向极值?指的是,几个数的和一定,求最大量的最大值,最小量的最小值。例3:6 名工人加工了 140 个零件,且每人加工的零件数量互不相同。若效率最高的工人加工了 28 个,则效率最低的工人最少加工了( )个零件。A.14 B.13 C.12 D.10(2)、逆向极值中的运用关于逆向极值,这里简单复习一下,什么是逆向极值?指的是,几个数的和一定,求最大量的最小值,最小量的最大值。例4:某连锁企业在 10个城市共有 100 家专卖店,每个城市的专卖店数量都不同。如果专卖店数量排名第 5 多的城市有 12 家专卖店,那么专卖店数量排名最后的城市,最多有几家专卖店?A.2 B.3 C.4 D.5【中公解析】:本题从最后一句可知是一道逆向求值问题。所求为专卖店排名最后的城市最多有几家店,要让最少的最多,就让其他城市的专卖店数量尽可能少,已知第5多的城市有12家店,所以第5多之前的四座城市分别是13、14、15、16。设数量最少的城市有X家,那往上四家即是,X+1、X+2、X+3、X+4,由此可列方程:12+13+14+15+16+X+X+1+X+2+X+3+X+4=100,解得X=4。本题如果按照构造等差数列的角度去解就更快,请看下表:一 二 三 四 五 六 七 八 九 十16 15 14 13 12 X+4 X+3 X+2 X+1 X通过观察,可以发现,前五个城市和后五个城市的数据构成两个等差数列,且都是奇数项,所以可以再次借用上述奇数项的中项求和公式,即前五项的和是14×5=70,所以后五项的和就是100-70=30,后五项的中间项是第八项X+2,可得式子30=5×(x+2),所以X=4。两种方法的优劣显而易见。综上,把等差数列与方阵问题、极值问题联系起来,让解题更有技巧性,做的更快更准,中公教育专家提醒考生们在日常的练习中也要多多建立知识点之间的关系,对于解题是大有裨益。

173 评论(11)

奔跑de小土豆

解答数字推理相关题目的前提是了解各种数列的形式和特点。比如:

243 评论(12)

相关问答