世界杯之猪
其实那题目你不需要看答案上的解释啊,左右两边都加3就 可以变形了 ,就成了第(n+1)项加3就等于两倍的 括号第n项加3的两倍,移项就行了!即构成一个等比数列{ an+3},公比为2的等比数列就OK了。
哦、起床…
a1=1, a2=5 ,a3=13,根据方程式可以得到an与an-1的关系然后两个方程式子相减就可得到,个人感觉你可以举出几项让侯归纳下,因为是填空题归纳法更快更节省时间
一碗人间烟火
一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如: 3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若 ,则c>b>a.。形如: ,则 。5. 定义新运算6. 特殊数列求和运用相关公式:①1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、 数论1. 奇偶性问题奇 奇=偶 奇×奇=奇奇 偶=奇 奇×偶=偶偶 偶=偶 偶×偶=偶2. 位值原则形如: =100a+10b+c3. 数的整除特征:整除数 特 征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质① 如果c|a、c|b,那么c|(a b)。② 如果bc|a,那么b|a,c|a。③ 如果b|a,c|a,且(b,c)=1,那么bc|a。④ 如果c|b,b|a,那么c|a.⑤ a个连续自然数中必恰有一个数能被a整除。5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 × p2 ×...×pk 7. 约数个数与约数和定理设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )8. 同余定理① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m) ②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。④两数的差除以m的余数等于这两个数分别除以m的余数差。⑤两数的积除以m的余数等于这两个数分别除以m的余数积。9.完全平方数性质①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。②约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。③质因数分解:把数字分解,使他满足积是平方数。④平方和。10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、 几何图形1. 平面图形⑴多边形的内角和N边形的内角和=(N-2)×180°⑵等积变形(位移、割补)① 三角形内等底等高的三角形② 平行线内等底等高的三角形③ 公共部分的传递性④ 极值原理(变与不变)⑶三角形面积与底的正比关系 S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4⑷相似三角形性质(份数、比例)① ; S1∶S2=a2∶A2②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2⑸燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;⑹差不变原理知5-2=3,则圆点比方点多3。⑺隐含条件的等价代换 例如弦图中长短边长的关系。⑻组合图形的思考方法① 化整为零② 先补后去③ 正反结合2. 立体图形⑴规则立体图形的表面积和体积公式⑵不规则立体图形的表面积整体观照法⑶体积的等积变形 ①水中浸放物体:V升水=V物 ②测啤酒瓶容积:V=V空气+V水⑷三视图与展开图 最短线路与展开图形状问题⑸染色问题 几面染色的块数与“芯”、棱长、顶点、面数的关系。四、 典型应用题1. 植树问题①开放型与封闭型②间隔与株数的关系2. 方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3. 列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4. 年龄问题差不变原理5. 鸡兔同笼假设法的解题思想6. 牛吃草问题原有草量=(牛吃速度-草长速度)×时间7. 平均数问题8. 盈亏问题分析差量关系9. 和差问题10. 和倍问题11. 差倍问题12. 逆推问题 还原法,从结果入手13. 代换问题 列表消元法 等价条件代换五、 行程问题1. 相遇问题路程和=速度和×相遇时间2. 追及问题路程差=速度差×追及时间3. 流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24. 多次相遇线型路程: 甲乙共行全程数=相遇次数×2-1环型路程: 甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5. 环形跑道6. 行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。7. 钟面上的追及问题。① 时针和分针成直线;② 时针和分针成直角。8. 结合分数、工程、和差问题的一些类型。9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。六、 计数问题1. 加法原理:分类枚举2. 乘法原理:排列组合3. 容斥原理:① 总数量=A+B+C-(AB+AC+BC)+ABC② 常用:总数量=A+B-AB4. 抽屉原理:至多至少问题5. 握手问题在图形计数中应用广泛① 角、线段、三角形,② 长方形、梯形、平行四边形③ 正方形七、 分数问题1. 量率对应2. 以不变量为“1”3. 利润问题4. 浓度问题倒三角原理例: 5. 工程问题① 合作问题② 水池进出水问题6. 按比例分配八、 方程解题1. 等量关系① 相关联量的表示法例: 甲 + 乙 =100 甲÷乙=3 x 100-x 3x x②解方程技巧 恒等变形2. 二元一次方程组的求解代入法、消元法3. 不定方程的分析求解以系数大者为试值角度4. 不等方程的分析求解九、 找规律⑴周期性问题① 年月日、星期几问题② 余数的应用⑵数列问题① 等差数列通项公式 an=a1+(n-1)d求项数: n= 求和: S= ② 等比数列求和: S= ③ 裴波那契数列⑶策略问题① 抢报30② 放硬币⑷最值问题① 最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数② 最优化问题a.统筹方法b.烙饼问题十、 算式谜1. 填充型2. 替代型3. 填运算符号4. 横式变竖式5. 结合数论知识点十一、 数阵问题1. 相等和值问题2. 数列分组⑴知行列数,求某数⑵知某数,求行列数3. 幻方⑴奇阶幻方问题:杨辉法 罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、 二进制1. 二进制计数法① 二进制位值原则② 二进制数与十进制数的互相转化③ 二进制的运算2. 其它进制(十六进制)十三、 一笔画1. 一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;2. 哈密尔顿圈与哈密尔顿链3. 多笔画定理笔画数=十四、 逻辑推理1. 等价条件的转换2. 列表法3. 对阵图竞赛问题,涉及体育比赛常识十五、 火柴棒问题1. 移动火柴棒改变图形个数2. 移动火柴棒改变算式,使之成立十六、 智力问题1. 突破思维定势2. 某些特殊情境问题十七、 解题方法(结合杂题的处理)1. 代换法2. 消元法3. 倒推法4. 假设法5. 反证法6. 极值法7. 设数法8. 整体法9. 画图法10. 列表法11. 排除法12. 染色法13. 构造法14. 配对法15. 列方程 ⑴方程 ⑵不定方程 ⑶不等方程{参考}
翔雨lollipop
第1和第2图的区别是 小尖块沿着4条道做顺时针运动 1-2 2-3图可以看见规律 那么第4图就应该是第3图的右上的小尖角象右顺时针移动一格~右下的小尖角顺时针旋转 ,左上角的那个沿着拐角在顺时针移动一格就变成向上的了~最左边的那个顺时针移动一下~就要变成向下的小尖角了
上海草根
行测考试题目内容越来越贴近我们的实际生活,而统筹问题往往与我们生活实际息息相关,因此经常会出现此类型的考试题目。统筹问题又分为不同的题型,包括空瓶换水、排队取水、货物集中等等一、空瓶换水所谓空瓶换水,就是给出一种兑换规则,然后让我们计算最后可以喝到几瓶水或者总共买了几瓶水的问题。我们要理清它的兑换规则,也要理解一瓶水包括一份水和一个空瓶。1、已知规则及空瓶数,求最多能喝到的水数。例:若12瓶矿泉水空瓶可以免费换1瓶矿泉水,现有101个矿泉水空瓶,最多可以免费喝到几瓶矿泉水?()A.8瓶 B.9瓶 C.10瓶 D.11瓶解析:需要强调的是,我们的目的是喝到水,而不是换瓶子,12个空瓶换1瓶水,可以写成12空瓶=1瓶水=1空瓶+1份水,移项后可得11空瓶=1份水。101÷11=9…2,因此可以免费喝到9瓶水。2、已知规则及喝到的水数,求至少应买多少瓶水。例:6个空瓶可以换一瓶汽水,某班同学喝了213瓶汽水,其中一些是用喝后的空瓶换来的,那么,他们至少要买多少瓶汽水?()A.176瓶 B.177瓶 C.178瓶 D.179瓶解析:这类问题可以先买213瓶汽水喝完后可有213个空瓶,这些空瓶可以退掉213÷6=35……3,说明可以退掉35瓶汽水,这样总共需要买213-35=178瓶汽水。二、排队取水排队取水问题实际上就是时间安排问题,如何才能节省时间,使得效率最高。考察内容经常有排队理发,排队接水,排队结账等等。我们先来思考一个问题,假设总共有五个人要理发,当第一个人理发时,有几个人在等他呢,显然是四个,所以总共等待的时间就是四份,而第二个人理发时,只有三位等待者,所以等候时间也就只有三份了,所以我们肯定要优先选择理发时间短的。所以是根据时间从短到长来排序。例:理发室里有一位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10、12、15、20和24分钟。合理安排他们的理发顺序,使这五人理发和等候所用时间的总和最少,则最少要用多少分钟?()A.81 B.207 C.209 D.225中公解析:10×5+12×4+15×3+20×2+24=207分钟。例: 6个人各拿一只水桶到水龙头接水。水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。现在只有这一个水龙头可用,问:怎样安排这6个人的接水次序,可使他们总的等候时间最短?这个最短时间是多少?()A.103 B.98 C.100 D.170中公解析:3×6+4×5+5×4+6×3+7×2+10=100分钟三、货物集中货物集中即集中统筹问题,是指在将货物集中的同时,使得货物的运费最省。我们常用的方法是支点法。下面我们通过一道例题一起来了解一下支点法:例1:在一条公路上,每隔10千米有一座仓库,共有5座分别为A、B、C、D、E,各仓库货物重量分别为10吨、20吨、30吨、40吨、50吨。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?A. A仓 B.C 仓 C.D仓 D.E仓解析:从ABCDE五个仓库中间任意(分别是AB BC CD DE)选择一个位置(最好假设是中间的某个位置),如若我们选择了CD之间某个位置,左边总共60吨,右边总共90吨,明显右边更重,哪边重我们就要将支点向哪边移动,所以我们要将这个支点移动到D点,接下来计算发现左边有100吨,右边有40吨,和上次计算的结果相反,证明D仓为最合适的选择,集中到D仓库的运费最少。例2:在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,则最少需要运费( )。A. 4500元 B. 5000元 C. 5500元 D. 6000元解析:可以用支点法,运送至五号最省,运费为(10×4×100+20×3×100)×0.5=5000元。只有启程,才会到达理想和目的地,只有拼搏,才会获得辉煌的成功,只有播种,才会有收获。
aeiou24680
一、准确理解和牢固掌握各种运算所需的概念、性质、公式、法则和一些常用数据;对于概念、性质、公式、法则的理解深刻的程度直接影响方法的选择与运算速度的快慢。概念模糊,公式、法则含混,必定影响运算的准确性。为了提高运算的速度,熟记一些常用的数据仍是必要的。如20以内的自然数的平方数,简单的勾股数,特殊三角函数值, 、 、 、lg2、lg3、 、e精确到0.001的近似值等。二、掌握运算的通法、通则,灵活运用概念、性质、公式和法则进行运算。教师可以结合教材内容,编制和收集一些灵活性较大的练习题,培养学生运算的灵活性,并引导学生收集、归纳、积累经验,形成熟练技巧,以提高运算的简捷性和迅速性。三、学习中注意教师及例题的典型示范,明确解题的目标、计算的步骤及其依据。通过典型示范比较顺利的由理解知识,过渡到应用知识,从而形成运算能力。四、提高运算中的推理能力数学运算的实质是根据运算定义及性质,从已知数据及算式推导出结果的过程,也是一种推理的过程。运算的正确性与否取决于推理是否正确,如果推理不正确,则运算就出错。在运算推理中要特别注意等价变换。五、注意关于数、式的恒等变形(变换)能力的训练。 1.符号变换,例如,去括号、添括号时的符号变换。 2.互逆变换,例如,加法与减法、乘法与除法、乘方与开方、微分与积分等。 3.配方变换。例如,a2 +b2=(a+b)2-2ab 等。 4.分解变换,例如, 已知x-y=3,y-z=5,求x-z,可以分解x-z=(x-y)+(y-z) 。 5.换元变换,例如,引入辅助元素,构造辅助函数,添加辅助线,添设参变量等。六、加强运算练习任何能力都是在一定的实践活动中形成和发展起来的,为了有效的提高学生的运算能力就必须加强练习,练习要有目的性、系统性、典型性。通过一题多变、一题多改、一题多解、一法多用,培养运算的熟练性、准确性、灵活性、组织性。以题组训练形式培养学生运算过程中思维的深刻性,提高运算能力。七、养成验算的习惯,掌握验算方法 在进行题目求解的运算的过程中或结束时还须对运算的过程和结果进行检验,以便及时纠正运算过程或结果中出现的错误,并掌握验算方法。例如,解方程,可以把解代入原方程检验,对于解分式方 程、无 理方程、对数方程、指数方程还可以从未知数的取值范围来检验。检验的方法通常有:还原法、代值法、估值法、逆运算等养成检验、检查的习惯,提高运算过程的思维监控能力,这是形成和发展运算能力的具体要求之一,在学习中不容忽略
优质公务员考试问答知识库