小马摩羯
公式为:
1、1/[n(n+1)]=(1/n)- [1/(n+1)]
2、1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
3、1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}
4、1/(√a+√b)=[1/(a-b)](√a-√b)
5、 n·n!=(n+1)!-n!
6、1/[n(n+k)]=1/k[1/n-1/(n+k)]
7、1/[√n+√(n+1)]=√(n+1)-√n
8、1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
扩展资料:
裂项相消法特征
1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
使用注意事项
注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)
数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序相加法求和:如an=n
闪闪惹人爱ii
(1)1/n(n+1)=1/n-1/(n+1) (2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)](4)1/(√a+√b)=[1/(a-b)](√a-√b)(5) n·n!=(n+1)!-n!
吃撑了别跑
裂项公式是:1/[n(n+1)]=(1/n)- [1/(n+1)]。1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]。1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}。
1/(3n-2)(3n+1)。
1/(3n-2)-1/(3n+1)=3/(3n-2)(3n+1)。
裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。裂项相消公式有nn!=(n+1)!-n!1/[n(n+1)]=(1/n)- [1/(n+1)]等。
数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。
三大特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” 。
(3)分母上几个因数间的差是一个定值裂差型运算的核心环节是“两两抵消达到简化的目的”。
优质公务员考试问答知识库