踏雪1230
公务员考试行测数量关系题,牛吃草问题的解法:追及型牛吃草问题:一个量使原有草量变大,一个量使原有草量变小。公式:原有草量=(牛每天吃掉的草-每天生长的草)*天数。相遇型牛吃草问题:两个量都使原有草量变小。公式:原有草量=(牛每天吃掉的草+其他原因每天减少的草量)*天数。极值型牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。公式:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=x。多个草场牛吃草问题:在不同一草场放不同的牛数有不同种吃法,其中每头牛每天吃的草量和草每天生长的量都不变。公式:通过最小公倍数寻找多个草场的面积的“最小公倍数”,再将所有面积都转化为“最小公倍数”同时对牛的头数进行相应的变化,转化成原有草量相同的标准的牛吃草问题。标准的牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求牛的头数或天数。公式:原有草量=(牛每天吃掉的草-每天生长的草)×天数。一般设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N,天数为T。即,原有草量=(N-X)*t.
我可不是吃素的
一、整除思想大家都知道,数量关系主要是考查大家用技巧去解决问题的一类题,所以出题人涉及的数字并不会很大,而且多是整数,整除也就是我们首用的一种思想了。举个简单的例子:二年级男生人数是女生的5倍,那么从这一句话我们可以知道,男生人数一定是5的倍数,或者说男生人数一定能够被5整除。通过一句话或某个符号特征就可以判断结果具备的整除特性,这就是整除思想的核心。到底有哪些话,哪些符号特征呢?1.文字描述整除:整除、平均(每)、倍数例:某机关盖车棚剩下一批砖,办公室请部分人员帮忙把砖搬走。若每人搬3块还剩10块,每人搬4块少20块。问共有多少块砖?A.100 B.110 C.120 D.130【华图解析】题干中出现“每”字考虑用整除。最后问我们砖的总数,很明显从题目中可以得到:砖的总数-10可以被3整除,砖的总数+20可以被4整除。结合选项,发现只有A项符合条件,故答案为A项。2.数字体现整除:比例、分数、百分数例:学校有足球和篮球的数量比为8:7,先买进若干个足球,这时足球与篮球的比变为3:2,接着又买进一些篮球,这时足球与篮球的数量比为7:6。已知买进的篮球比买进的足球多3个,原来有足球多少个?A.48 B.42 C.36 D.30【华图解析】题干中出现比例,问题最后问我们原来足球的数量,那么去题干找描述原来足球的句子。第一句“足球与篮球的数量比为8:7”,可知原来足球的数量可以被8整除,观察选项只有A项符合。二、方程思想方程思想是大家最熟悉的一种思想,可往往在考试中用得并不是很好。其实每年的国考都有题目是靠列方程去解比较快捷容易的,所以在这里提醒大家,国考的复习千万别忘记方程,平时的时候可以多去练习一下。在这里简单得举个例题,来说明一下方程思想的三个步骤:设未知数,列方程和解方程。例:老王两年前投资的一套艺术品市价上涨了50%,为尽快出手,老王将该艺术品按市价的八折出售,扣除成交价5%的交易费用后,发现与买进时相比赚了7万元。问老王买进该艺术品花了多少万元?A.42 B.50 C.84 D.100【华图解析】这是基本的利润问题,设成本为x,根据题干中等量关系可以列出方程:x(1+50%)×0.8×(1-5%)=x+7,解方程求得x=50,故答案选择B项。三、代入排除思想数量关系中有一些题目不方便去列式或者说没必要列式,列出式子不好解的题目,这个时候我们可以选择代入排除的方法,将选项代入到题干中,推得题干中的结论。但是,代入排除并不是盲目地从第一个选项逐个往后,而是先排除再代入。在排除的时候可以用我们的整除特性、奇偶性等等。例:甲、乙、丙、丁四个数的和为43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,都相等。问这4个数各是多少?A.14,12,8.9 B.16,12,9,6C.14,12,9,8 D.11,10,8,14【华图解析】由乙数的3倍和丙数的4倍相等,可知乙和丙之比是4:3,所以可以排除和D。由甲数的2倍加8和乙数的3倍相等,可得C。
天津的明
您好,华图教育为您服务。
这次公务员公务员试题的信息请到华图查看,那里有详细的介绍。有老师的培训,还收集了历年的真题和热点解析。行测和申论两科目课程。均为近三年的(2012-2014)考试真题,名师深入研究、精准把握考点。从真题解析入手,帮助考生掌握考试本质。
世界博览会,是一项由主办国政府组织或政府委托有关部门举办的有较大影响和悠久历史的国际性博览活动。参展者向世界各国展示当代的文化、科技和产业上正面影响各种生活范畴的成果。它已经历了百余年的历史,逐渐成为荟萃科学技术与产业技术的展览会,成为产业人才培育和一般市民启蒙教育不可多得的场所。但它最初是(http://htwx.huatu.com/gwy/) A. 以纺织工业品展示为主 B. 以生活日用品展示为主 C. 以美术品和传统工艺品的展示为主 D. 以建筑成果展示为主
考试录用工作按照制定录用计划、发布招录公告、报名与资格审查、笔试、资格复审、体能测评(人民警察职位)、面试、体检和考察、公示、审批录用等步骤进行,由省公务员主管部门统一组织,有关工作由市公务员主管部门和省直招录机关具体组织实施。
如有疑问,欢迎向华图教育企业知道提问。
猪头小队长1982
方程法在数学运算中可以称得上是万能解法,这是因为考题基本上都是在围绕等量关系做数量运算——无论题目多复杂,其间必然存在着一个或多个等量关系,题目中的未知量是具备数量关系的。有了这个前提,我们就可以将题目中的所有条件用数学等式表达出来,进行求解。一般在行测数学运算考试中,我们将常考的知识点分成多个题型,比如常见的“行程问题”、“工程问题”、“容斥问题”……方程法并没有固定的解题对象,一般只要题目中出现等量关系、多未知数之间存在数量关系我们就可以用构造方程的思路列出等式解题,下面我们来看“方程法”在各种不同题型中的应用。【例1】妈妈、姐姐、妹妹三人现在的年龄之和为64岁,当妈妈的年龄是姐姐的年龄的三倍时,妹妹6岁;当姐姐的年龄为妹妹的两倍时,妈妈的年龄为34岁,问妈妈现在的年龄为多少岁?【分析】本题为年龄问题,年龄问题在解题过程中我们常使用整除法和方程法,在列方程是年龄问题中最明显的等量关系就是——年龄差相等。本题中通过分析我们可以找到两组等量关系:妈妈和姐姐的年龄差,姐姐与妹妹的年龄差,用这两部分的年龄差相等就可以列出等式进行求解了。我们做出如下表格就能清晰的将本题的数量关系找到:在本题中明显可以得到两个等式:3x-x=34-2y;x-6=2y-y,通过这两个方程可以容易的求解得出y=4,登入第三行可见当妈妈34岁时,姐姐8岁,妹妹4岁,年龄和为46岁,和64岁之间差18岁,则没人差6岁,则妈妈现在34+6=40岁。方程法不仅可以适用于没有具体方法的题型,同样也适用于固定解法的题型中,比如和定求最值问题。比如和定求最值问题的求解中,在讲解中我们常用构造等差数列来解决常见的和定求极值问题,但是当题型变化比较复杂时,难以用常见方法求解,方程法可以轻易解决这个复杂问题。【例2】某年级七个班级的同学共植树304棵,已知每个班至少植树20棵,且棵树都不想等,按数量从多少排名恰好为一班至七班,又知一班植树的数量为二、三两班之和,二班植树为四五班级之和,那么三班最多植树多少棵?【分析】要求三班植树尽量多,则应让其他班植树尽量少,故六班和七班应分别植20和21棵。设三班植树x棵,则二班植树x+1棵,一班植2x+1棵,四班和五班共植树x+1棵,因此得到方程2x+1+x+1+x+x+1+20+21=304,解得x=52,即三班最多植树52棵。代入验证四、五班的植树棵树,可满足题干要求。
斗真山下
公务员行测的各个模块里,最令人头疼的就是数量关系模块,它需要你能快速地读懂题目,列出相关的算式,在进行计算,稍一偏差,就前功尽弃,在考场里,有很多人的数量关系模块是直接填涂的'眼缘'答案,甚至还有人没来得及看题,时间不够就直接填涂了,这是一个很让人“放弃”的模块,但是如果想要和其他竞争者拉开差距,数量模块你必须有所收获。
复习阶段,首先是抓重点。自己去总结最近几年的数量题,看看哪些知识点是一直再出现的,比如相遇追及,工程效率,利润率,概率,排列组合等等,对于一直出现在考试卷的题型,我们应该重点去复习,不至于盲目的刷题。
其次,深入理解。数量关系不像言语,常识类型的知识点,需要你去记忆,它的答题需要你对这个知识点的高度理解,能快速找到破题点,并且得出答案,所以需要你去对相应的重点考点加深理解,将它的原理理解透彻,越是囫囵吞枣,你拿到题目,一时间就无法举一反三,需要大量的思考时间,这样也就得不偿失了。
最后,不要迷信于网上的秒杀技巧,也不要排斥秒杀技巧。网络现在有很多的秒杀技巧,但是大多数的时候,你是无法去直接秒杀出来的,只有极少数特定的情况才能使用,所以在复习的过程中,不要沉迷于秒杀技巧的钻研,可以做一个了解,在特殊的情况下,你时间不够无法去按步骤做题时,恰好有相关的类型也可以大胆一试。
应考时,你要做的是有全局观,数量关系最后做。数量关系确实是一个最难的模块,你千万不要一上来就要先把它做完在去做其他题目,正常情况下,你做完其他四个模块后,大约还有10-20分钟的时间,这个时间才是你去破题得分的时候。
做题要有取舍,数量关系题目每年的难度差距不大,题量也固定在20道,短时间里,你不可能每题都做出来,所以你要选择性地去做一些简单的题目,将太难的直接放弃,留出时间来多做一道。
做题心态平和,在考场的最后十五分钟里,会有语音播报,提醒你还有最后的十五分钟,请检查并且填涂答案等,这个时候千万不要心慌,心态依然平和,十五分钟可以做很多题了;在最后的三分钟里,一定要检查一下自己的准考证号,姓名之类的填写是否正确,答题卡是否填涂完毕,力争做到万无一失,不犯低级错误。
数量模块是一个难点,也是拉分差的一个点,你不能完全放弃,但也不能完全得到,抓重点,有取舍,可得分。
行测数量关系解题技巧
行测数量关系答题技巧有很多,考生可针对不同的题型选择合适自己的方法来帮助答题,常用的方法如下。
1、特值法,所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于只需要把握整体分析的数学运算题非常有效。其中,“有效设1”是最常用的特值法。
2、分合法,分合法主要包括分类讨论法和分步讨论法两种,重点应用于排列组合问题中。在解答某些数学运算问题时,会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。而分步讨论法则是指有时候有些问题是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决。
3、方程法,将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式,通过求解未知数的值,来解应用题的方法。方程法应用较为广泛,公务员考试数学运算部分有相当一部分的题目都可以通过方程法来求解。
4、比例法,根据题干中相关比例数据,解题过程中将各部分份数正确画出来,进行分析,往往能简化难题,加速解题。
5、计算代换法,计算代换法是指解数学运算题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。实质是数量之间的转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
6、尾数计算法,尾数法是数学运算题解答的一个重要方法,即当四个答案全不相同时,可以采用尾数计算法,最后选择出正确答案。
五大方法:代入法、赋值法、倍数比例法、奇偶特性法、方程法;
五大题型:工程问题、行程问题、溶液问题、容斥原理、最值问题;
一、五大方法
1.代入法
代入法是行测做题第一大法,优先考虑,可参考高中数学函数代入法和高等数学中的代入法。
2.赋值法
对于公式当中形如A=B*C的式子若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。
3.倍数比例法
若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
4.奇偶特性法
两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;
两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;
两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数;
5.方程法
很多数学运算题目都可以采用列方程进行求解。
方程法注意事项:未知数要便于列方程;未知数可以用字母表示,当题目中出现比例,百分数等形式也可以用“份数”设NX。下面是6张图,内容是数量关系的解题技巧和蒙题技巧!
二、五大题型
1.工程问题:工作量=工作效率×工作时间
工程问题一般采用赋值法解题。赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。
2.行程问题:路程=速度×时间
行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。常考的题型包括相遇问题和追及问题。
相遇问题:路程和=速度和×时间
追及问题:路程差=速度差×时间
3.溶液问题:浓度=溶质÷溶液
溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。可参考人民教育出版社化学选修4:化学反应速率课本中的溶液问题,可以很巧妙的解决!
4.容斥原理
两集合型的容斥原理题目,关键是分清题目中的“条件I”和“条件II”,然后直接套用公式:满足“条件I”的个数+满足“条件II”的个数-两者都满足的个数=总个数-两者都不满足的个数
三集合公式型题目,需要大家记住公式核心公式:
A+B+C-AB-AC-BC+ABC=总个数-三者都不满足的个数
三集合图示型题目,当题目条件不能直接代入标准公式时,我们可以考虑利用图示配合,标数解答。
5.最值问题:三类
第一,抽屉原理,特征“至少+保证”,方法“最不利原则”,答案“所有最不利+1”;
第二,多集合问题,特征“至少”,方法“逆向考虑”;这类题目的做法,一般就是将每个集合不满足的个数求出,然后求和得到有不满足集合的个数最多,再用总数减去这个和,得到满足的个数最少为多少。
第三,构造数列,特征“最多最少”,方法“极端思想”这类题目的做法就是在极端思维情况下,构造出满足条件的一个数列,然后数列求和等于题目所给总和,再根据提问方式得到最终结果。
优质公务员考试问答知识库