• 回答数

    6

  • 浏览数

    121

sojisubyun
首页 > 公务员考试 > 公务员考试题共有24头牛

6个回答 默认排序
  • 默认排序
  • 按时间排序

冲哥是个姐

已采纳

这里有个简便的方法,仅供参考。资料来源于国家公务员考试网牛吃草问题可能很多人会做,列了好几个方程,算来算去,能不能算出还不知道,时间浪费不少。牛吃草问题可以衍生出相关题目,己经考过的像水池放水,蜡烛燃烧等题都可以用到牛吃草的方法去做题。通过本节的学习,以后遇到相关题目20 秒即可做出答案。大家要好好的掌握,牢记下面的一个公式。.牧场上有一片均匀生长的牧草,可供27 头牛吃6 天,或供23 头牛吃9 天。那么它可供21 头牛吃几天?常规的做法,很多辅导班培训的方法也是如此:假设X 为每天长草量,Y 为草场草量( 27一X ) X6 = Y( 23 一X ) xg = YX = 15 , Y = 72( 21 一15 ) X 天数=72得天数为12 天。从列方程到计算,总时间超出1 分钟了。简便方法:( 27一X ) X6 = ( 23 一X ) Xg 得出X = 15( 21一15 )只天数=( 27 一X ) X6 得出天数为12 。此方程要牢牢记住:草原原有草量=(牛数一每天长草量)*天数( 27一x ) X6 = ( 23 一x )火9 ,遇到类似的题目,去接套用。详细分析:解:设每天新增加草量恰可供x 头牛吃一天,21 牛可吃Y 天(后面所有x 均为此意)问供27 头牛吃6 天,列式:( 27 一x ) x6 注:( 27 一x )头牛6 天把草场吃完可供23 头牛吃9 天,列式:( 23 一x ) Xg 注:( 23 一X )斗月二9 天把草场吃完可供21 头牛吃几天?列式:( 21 一X ) XY 注:仅l 一X )头牛Y 天把草场吃( 27 一X ) X6 = ( 23 一X ) Xg 一(21 一X ) XY( 27 一X ) X6 一(23 一X ) Xg( 23 一X ) Xg = ( 21 一X ) XY解这个方程组,得x 二15 (头)Y ? 12 (天)2.牧场上有一片青草,草每天以均匀的速度生长,这些草供给20 头牛吃,可以吃20 天;供给1 的头羊吃,可以吃12 天。如果每头牛每天的吃草量相当于4 只羊一天的吃草量,那么20 头牛,100 只羊同时吃这片草,可以吃几天?( ) A . 2 B . 4 ( 8 / 13 ) C . 6 ( 7 / 12 ) D . 8解析:看题直接套用数字,( 20 一x ) XZo 二(25 一X ) X12 ,得X = 100 / 8 , ( 20 + 25 一X ) X 天数=( 20 一X ) X20得出x 一60 / 13 。(此题要看清题目,是牛和羊)2.现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8 台抽水机10 天可以抽干;用6 台抽水机20 天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水?解析:( 8 一x ) 10 二(6 一x ) 20 ,得出x ,在代入3.一只船发现漏水时,已经进了一些水,水匀速进入船内如果10 人淘水,3 小时淘完:如5 人淘水8 小时淘完汝口果要求2 小时淘完,要安排多少人淘水?解析:( 10 一X ) X3 = ( 5 一x ) XS ,得出X 在代入4.有一片牧场,24 头牛6 天可以将草吃完;21 头牛8 天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛?( ) A . 8 B . 10 C . 12 D . 14解析:( 24一x ) 6 = ( 21 一x ) 8 ,得出x = 12公式中X 是每天长出来的草刚好被吃完,所以要永远吃不完,刚好是12 头。7.自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.己知男孩每分钟走20 级梯级,女孩每分钟走巧级梯级,结果男孩用了5 分钟到达楼上,女孩用了6 分钟到达楼上.问:该扶梯共有多少级?解析:总楼梯数即总草量,列式(20 一X )火5 = ( 15 一)x6 ,得X =一10 (级)将X =一10 代入,( 20 一X )又5 得150 级楼梯8.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4 个检票口需30 分钟,同时开5 个检票口需20 分钟.如果同时打开7 个检票口,那么需多少分钟?解析:和牛吃草一样的道理。9.有三块草地,面积分别为5 , 6 和8 公顷.草地上的草一样厚,而且长得一样快,第一块草地可供n 头牛吃10 天,第二块草地可供12 头牛吃14 天.问:第三块草地可供19 头牛吃多少天?A . 6 B . 7 C . 8D . 9解析:此题比前面牛吃草的题目相对难点。现在是三块面积不同的草地.为了解决这个问题,需要将三块草地的面积统一起来.(这是面积不同时得解题关键)求(5 , 6 , 8 )的最小公倍数,最小公倍数为1201 、因为5 公顷草地可供11 头牛吃10 天,120 于5 ? 24 ,所以120 公顷草地可供llx24 = 264 (头)牛吃10 天.2、因为6 公顷草地可供12 头牛吃14 天,120 二6 一20 ,所以120 公顷草地可供12xZo = 240 (头)牛吃14 天.3、1 20 一8 = 15 ,问题变为:120 公顷草地可供19X15 = 285 (头)牛吃几天?这样一来,就可以转化为简单的牛吃草,同理可得:( 264一X ) X 10 = ( 240 一X )又14 得X = 180 (头)算出X ,在代入:( 285 一1 80 ) xy ? ( 264 一180 )又10Y 二8 (天)牛吃草的难题只要做下转化,即可轻松做出。牛吃草,及水池放水,排队等等都可以归类为牛吃草的解法。培训班所讲的方法就是列方程,方法很一般。希望大家要灵活应用此方法,做题时快速套用公式相关练习题:一片牧草,可供16 头牛吃20 天,也可以供80 只羊吃12 天,如果每头牛每天吃草量等于每天4 只羊的吃草量,那么10 头牛与60 只羊一起吃这一片草,几天可以吃完?(A . 1 0 B . 8 C . 6 D . 42.两个孩子逆着自动扶梯的方向行走。20 秒内男孩走27 级,女孩走了24 级,按此速度男孩2 分钟到达另一端,而女孩需要3 分钟才能到达。则该扶梯静止时共有多少级可以看见?( ) A . 54 B . 48 C . 42 D363 . 22头牛吃33 公亩牧场的草,54 天可以吃尽,17 头牛吃同样牧场28 公亩的草,84 天可以吃尽。请问几头牛吃同样牧场40 公亩的草,24 天吃尽?( )A . 50 B46 C38 D354.经测算,地球上的资源可供100 亿人生活100 年或者是可供80 亿人生活300 年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?5.某车站在检票前若干分钟就开始排队,每分钟来的旅客是一样多(人数),若同时打开4 个检票口,从开始检票到等候检票的队伍消失,需要30 分钟,同时开5 个检票口的话,需要20 分钟。如果同时打开7 个检票口的话,那么需要多少分钟?6.甲乙丙三辆车同时从同一地点出发,沿同一公路追赶前面的一骑自行车的人,这只辆车分别用3 小时、5 小时、6 小时追上骑自行车的人,现在知道甲车每小时行了24 千米,乙车每小时行20 千米,你能知道丙车每小时多少千米?7.有一牧场氏满牧草,每天牧场匀速生长。这个牧场可供17 头牛吃30 天,可供19 头牛吃24 天。现有若干头牛吃草,6 天后,4 头牛死亡,余下的牛吃了2 天将草吃完,求原有牛的头数。8.由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少。已知某块草地上的草可供20 头牛吃5 天或可供15 头牛吃6 天,照此计算可供多少头牛吃10 天?

公务员考试题共有24头牛

355 评论(12)

天权STAR

“牛吃草”的解法归为两大类,用下面例题来说明 例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。那么它可供21头牛吃几天? 对于这类型牛吃草问题最简单的。大部分问题可以解出。一个理想化的模型: 设每天新长出来的草都被27头牛和23头牛中的个别牛吃了,设为X,或者可以说他们是割草机,保证牧场总草量不变,这个应该好理解啊。那么27-x就是真正减少草量的牛中之牛了,那么(27-x)6就是原来的草量了,那么根据原来草量相等,设21头牛可吃y天,列出方程 (27-x )6=(23-x)9=(21-x)y好理解吧,哈哈。现在介绍第2中解法假设1头牛1天吃的草量为a,那么27头牛6天吃27*6a,23头牛9天吃23*9a那么23*9a-27*6a=45a 结果就是3天新长出来的草量,然后算出每天新长出来的草量15a,即可算出原来总草量,27*6a-6*15a=72a设21头牛吃x天21ya=72a+y*15a 即可得出,这种解法的关键就是“1头牛1天吃的草量为a” 上面说的是最简单的了。下面看它的变型。例3 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?解析:本题的不同点在草匀速减少,不管它,和第一种解法设X、Y一样来理想化,解出的X为负数(无所谓,因为X是我们理想化的产物,没有实际意义),解出Y为我们所求。例4 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?解析:总楼梯数即总草量,设略 列式(20-X)•5=(15-X)•6 X=-10(级)???(已说过,X是理想化的产物,没有实际意义) 将X=-10代入(20-X)•5得150级楼梯例5 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟? 解析:原有旅客即原有草量,新来排队得旅客即每天新长出得草量,其它不用我多说了吧。例6现欲将一池塘水全部抽干,但同时有水匀速流入池塘。若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。问:若要5天抽干水,需多少台同样的抽水机来抽水? 解析:原有水量即原有草量,新匀速注入得水即每天新长出得草量,继续。。。。。。例7一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水? 解析:^_^,和例3一摸一样,解出X是负数,解出Y即为所求。下面的是不用第一种解法而用第2中解法。119.某市水库水量的降雨量是一定的,可供全市12万人使用20年,在迁入3万人之后,只能供全市人民使用15年,市政府号召大家节约用水,希望将水库的使用寿命延长至30年,那么居民平均需要节约用水量的比例是多少?( ) A. 2/5 B. 2/7 C. 1/3 D. 1/4看此题,用第一种解法,那么(12--x)*20=(15-x)*15=[15*(1-y)-x]*30,看看最后这个x,很明显跟前面的不一样,他大于前面的x,虽然发明这种解法的人认为x本来就是理想化的,但是我认为这种的不好理解,所以,对于这种改变了x的,我个人认为利用第2种解法好点。

146 评论(14)

昂昂千里

一、牛吃草模型【例1】牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。如果供给25头牛吃,可以吃多少天?这就是一道非常典型的牛吃草问题,典型的牛吃草问题的条件是设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。二、解题技巧牛吃草其实是是消长问题,如原来有一片草AB段。草继续保持原来的速度向右点生长,而牛开始吃草。在C点时,牛将新长出来的草和原来的草全都吃完了。将这个模型抽象成二维空间的图如下,我们可以发现,和我们学过的追及问题非常相似,因此类比追及问题来推导牛吃草问题的公式:M:原来共有M份草。N:有N头牛,每头牛每天吃1份草。牛吃草的速度为N份/天。x:草每天生长x份草t:牛把所有草吃光所花的时间根据学过的追及问题的公式我们可以知道M=(N-x)·t。所以根据公式,M=(10-x)×22=(16-x)×10。解得x=5,M=110。问25头牛可吃多少天则可列方程:M=(25-x)×t,带入可得t=5.5天三、模型变形1、相遇型当寒冬来临,牛仔每天吃草的同时,草也在以一定的速度枯萎。此时,牛吃草问题又会变成什么样呢?我们会发现牛吃的量与草枯死的量之和应该等于原有草量。这其实就是我们在行程问题当中的相遇问题。公式:M=(N+x)t。【例2】寒冬已至,草场的草每天以一定的速度在枯死。如果有20头牛吃草,5天可以吃完,如果有15头牛吃草,6天可以吃完。假设每头牛每天吃的量时固定的,照此计算,想要10天把草吃完,需要多少头牛?【参考答案】根据题目意思,枯死的草和牛所吃掉的草等于草场原有的草。因此根据公式可得:M=(20+x)×5=(15+x)×6。解得x=10,M=150。想要在10天吃完则有M=(N+x)10。可得N=5。1、极值型我们一直在说合理放牧,说的是放牧的同时,不让草场的草被吃光。那么在这种情况下的牛吃草问题怎么去做呢?我们发现,只要牛吃草的速度追不上草生长的速度,草永远不会被吃光,此时最多可以养x头牛。因此在牛吃草问题中,若出现极值型的题目,一般考虑N=x的情况。【例3】春天来了,草场的草又开始生长。如果有24头牛吃草,那么6天把草吃光,如果21头牛吃草,8天把草吃光。想要让草永远不被吃光,最多放几头牛吃草?【参考答案】根据题目意思,草每天都在生长,当牛每天吃草的量等于草场每天生长的量,我们就能保证草能永远不被吃光。根据公式可得:M=(24-x)×6=(21-x)×8。解得x=12,M=72。即草每天都长12份,为了让草永远不被吃光,最多只能放12头牛吃草。2、多个草场型我们说一个草原上不可能只有一个草场,所以说又多出了一类问题,多个草场的牛吃草问题,是不同的牛数在不同的草场上的几种不同吃法,其中每头牛每天吃草量和草每天的生长量,两个量是不变的。我们可以通过最小公倍数法即通过寻找多个草场面积的“最小整数倍”,然后将所有面积都转化为“最小公倍数”,同时对牛的头数进行相应变化,然后进行解答。这样就变成了在相同面积草场的牛吃草问题,那么就可以直接使用牛吃草问题公式进行解答了。【例4】20头牛,吃30公亩牧场的草15天可吃尽,15头牛吃同样牧场25公亩的草,30天可吃尽。请问几头牛吃同样牧场50公亩的草,12天可吃尽?【参考答案】取30、25和50的公倍数300,所以原题等价于“300亩的牧场可供200头牛吃15天,可供180头牛吃30天,那么可供多少头牛吃12天”,300亩的草可供N头牛吃12天,那么有(200-x)×15=(180-x)×30=(N-x)×12,解得x=160,N=210,210÷6=35,所以35头牛吃同样牧场50公亩的草,12天可吃尽。

303 评论(14)

尛嘴亂吃

牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。这四个公式是解决消长问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。 牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。 解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是: 1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。 2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。你直接找我

274 评论(13)

天天天晴9080

公务员考试行测数量关系题,牛吃草问题的解法:追及型牛吃草问题:一个量使原有草量变大,一个量使原有草量变小。公式:原有草量=(牛每天吃掉的草-每天生长的草)*天数。相遇型牛吃草问题:两个量都使原有草量变小。公式:原有草量=(牛每天吃掉的草+其他原因每天减少的草量)*天数。极值型牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。公式:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=x。多个草场牛吃草问题:在不同一草场放不同的牛数有不同种吃法,其中每头牛每天吃的草量和草每天生长的量都不变。公式:通过最小公倍数寻找多个草场的面积的“最小公倍数”,再将所有面积都转化为“最小公倍数”同时对牛的头数进行相应的变化,转化成原有草量相同的标准的牛吃草问题。标准的牛吃草问题:在同一草场放不同的数量的牛有不同种吃法,求牛的头数或天数。公式:原有草量=(牛每天吃掉的草-每天生长的草)×天数。一般设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N,天数为T。即,原有草量=(N-X)*t.

186 评论(13)

大大大吉CQ

牛吃草问题概念及公式 牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是∶ (1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数); (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` 牛吃草(3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度。 这四个公式是解决消长问题的基础。 由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。 牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。 解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。 这类问题的基本数量关系是: 1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。 2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。[编辑本段]“牛吃草”问题分析 华图公务员考试研究中心数量关系资料分析教研室研究员 姚璐 【华图名师姚璐例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天? A.3 B.4 C.5 D.6 【华图名师姚璐答案】C 【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y天 根据核心公式 代入 (200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天) 璐例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天? A.20 B.25 C.30 D.35 【华图名师姚璐答案】C 【华图名师姚璐解析】设该牧场每天长草量恰可供X头牛吃一天, 根据核心公式代入 (20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头) 【华图名师姚璐例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛? A.50 B.46 C.38 D.35 【华图名师姚璐答案】D 【华图名师姚璐解析】 设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y , 24天内吃尽40公亩牧场的草,需要Z头牛 根据核心公式: ,代入 ,因此 ,选择D 【华图名师姚璐注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。 下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。 【华图名师姚璐例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】 A.5台 B.6台 C.7台 D.8台 【华图名师姚璐答案】B 【华图名师姚璐解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机 有恒等式: 解 ,得 ,代入恒等式 【华图名师姚璐例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?【北京社招2006】 A.16 B.20 C.24 D.28 【华图名师姚璐答案】C 【华图名师姚璐解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时 有恒等式: 解 ,得 ,代入恒等式 【华图名师姚璐例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)【浙江2007】 A.2周 B.3周 C.4周 D.5周 【华图名师姚璐答案】C 【华图名师姚璐解析】设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完 有恒等式: 解 ,得 ,代入恒等式 【华图名师姚璐例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了【浙江2006】 A.2小时 B.1.8小时 C.1.6小时 D.0.8小时 【华图名师姚璐答案】D 【华图名师姚璐解析】设共需X小时就无人排队了。[编辑本段]例题 1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了 求增加人数的速度还有原来的人数 设一个检票口一分钟一个人 1个检票口30分钟30个人 2个检票口10分钟20个人 (30-20)÷(30-10)=0.5个人 原有1×30-30×0.5=15人 或2×10-10×0.5=15人 2、有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份 所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=1.6份 所以,每亩原有草量60-30×1.6=12份 第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份 新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛 所以,一共需要38.4+3.6=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量 (28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头 41253060加我

187 评论(15)

相关问答