• 回答数

    6

  • 浏览数

    159

dp73242962
首页 > 公务员考试 > 公务员考试单独数和重叠数

6个回答 默认排序
  • 默认排序
  • 按时间排序

Summer若然霜寒

已采纳

一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如: 3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若 ,则c>b>a.。形如: ,则 。5. 定义新运算6. 特殊数列求和运用相关公式:①1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n二、 数论1. 奇偶性问题奇 奇=偶 奇×奇=奇奇 偶=奇 奇×偶=偶偶 偶=偶 偶×偶=偶2. 位值原则形如: =100a+10b+c3. 数的整除特征:整除数 特 征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4. 整除性质① 如果c|a、c|b,那么c|(a b)。② 如果bc|a,那么b|a,c|a。③ 如果b|a,c|a,且(b,c)=1,那么bc|a。④ 如果c|b,b|a,那么c|a.⑤ a个连续自然数中必恰有一个数能被a整除。5. 带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 × p2 ×...×pk 7. 约数个数与约数和定理设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )8. 同余定理① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m) ②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。③两数的和除以m的余数等于这两个数分别除以m的余数和。④两数的差除以m的余数等于这两个数分别除以m的余数差。⑤两数的积除以m的余数等于这两个数分别除以m的余数积。9.完全平方数性质①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。②约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。③质因数分解:把数字分解,使他满足积是平方数。④平方和。10.孙子定理(中国剩余定理)11.辗转相除法12.数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、 几何图形1. 平面图形⑴多边形的内角和N边形的内角和=(N-2)×180°⑵等积变形(位移、割补)① 三角形内等底等高的三角形② 平行线内等底等高的三角形③ 公共部分的传递性④ 极值原理(变与不变)⑶三角形面积与底的正比关系 S1∶S2 =a∶b ; S1∶S2=S4∶S3 或者S1×S3=S2×S4⑷相似三角形性质(份数、比例)① ; S1∶S2=a2∶A2②S1∶S3∶S2∶S4= a2∶b2∶ab∶ab ; S=(a+b)2⑸燕尾定理S△ABG:S△AGC=S△BGE:S△GEC=BE:EC;S△BGA:S△BGC=S△AGF:S△GFC=AF:FC;S△AGC:S△BCG=S△ADG:S△DGB=AD:DB;⑹差不变原理知5-2=3,则圆点比方点多3。⑺隐含条件的等价代换 例如弦图中长短边长的关系。⑻组合图形的思考方法① 化整为零② 先补后去③ 正反结合2. 立体图形⑴规则立体图形的表面积和体积公式⑵不规则立体图形的表面积整体观照法⑶体积的等积变形 ①水中浸放物体:V升水=V物 ②测啤酒瓶容积:V=V空气+V水⑷三视图与展开图 最短线路与展开图形状问题⑸染色问题 几面染色的块数与“芯”、棱长、顶点、面数的关系。四、 典型应用题1. 植树问题①开放型与封闭型②间隔与株数的关系2. 方阵问题外层边长数-2=内层边长数(外层边长数-1)×4=外周长数外层边长数2-中空边长数2=实面积数3. 列车过桥问题①车长+桥长=速度×时间②车长甲+车长乙=速度和×相遇时间③车长甲+车长乙=速度差×追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和×相遇时间车长=速度差×追及时间4. 年龄问题差不变原理5. 鸡兔同笼假设法的解题思想6. 牛吃草问题原有草量=(牛吃速度-草长速度)×时间7. 平均数问题8. 盈亏问题分析差量关系9. 和差问题10. 和倍问题11. 差倍问题12. 逆推问题 还原法,从结果入手13. 代换问题 列表消元法 等价条件代换五、 行程问题1. 相遇问题路程和=速度和×相遇时间2. 追及问题路程差=速度差×追及时间3. 流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷24. 多次相遇线型路程: 甲乙共行全程数=相遇次数×2-1环型路程: 甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程×共行全程数5. 环形跑道6. 行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。7. 钟面上的追及问题。① 时针和分针成直线;② 时针和分针成直角。8. 结合分数、工程、和差问题的一些类型。9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。六、 计数问题1. 加法原理:分类枚举2. 乘法原理:排列组合3. 容斥原理:① 总数量=A+B+C-(AB+AC+BC)+ABC② 常用:总数量=A+B-AB4. 抽屉原理:至多至少问题5. 握手问题在图形计数中应用广泛① 角、线段、三角形,② 长方形、梯形、平行四边形③ 正方形七、 分数问题1. 量率对应2. 以不变量为“1”3. 利润问题4. 浓度问题倒三角原理例: 5. 工程问题① 合作问题② 水池进出水问题6. 按比例分配八、 方程解题1. 等量关系① 相关联量的表示法例: 甲 + 乙 =100 甲÷乙=3 x 100-x 3x x②解方程技巧 恒等变形2. 二元一次方程组的求解代入法、消元法3. 不定方程的分析求解以系数大者为试值角度4. 不等方程的分析求解九、 找规律⑴周期性问题① 年月日、星期几问题② 余数的应用⑵数列问题① 等差数列通项公式 an=a1+(n-1)d求项数: n= 求和: S= ② 等比数列求和: S= ③ 裴波那契数列⑶策略问题① 抢报30② 放硬币⑷最值问题① 最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数② 最优化问题a.统筹方法b.烙饼问题十、 算式谜1. 填充型2. 替代型3. 填运算符号4. 横式变竖式5. 结合数论知识点十一、 数阵问题1. 相等和值问题2. 数列分组⑴知行列数,求某数⑵知某数,求行列数3. 幻方⑴奇阶幻方问题:杨辉法 罗伯法⑵偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、 二进制1. 二进制计数法① 二进制位值原则② 二进制数与十进制数的互相转化③ 二进制的运算2. 其它进制(十六进制)十三、 一笔画1. 一笔画定理:⑴一笔画图形中只能有0个或两个奇点;⑵两个奇点进必须从一个奇点进,另一个奇点出;2. 哈密尔顿圈与哈密尔顿链3. 多笔画定理笔画数=十四、 逻辑推理1. 等价条件的转换2. 列表法3. 对阵图竞赛问题,涉及体育比赛常识十五、 火柴棒问题1. 移动火柴棒改变图形个数2. 移动火柴棒改变算式,使之成立十六、 智力问题1. 突破思维定势2. 某些特殊情境问题十七、 解题方法(结合杂题的处理)1. 代换法2. 消元法3. 倒推法4. 假设法5. 反证法6. 极值法7. 设数法8. 整体法9. 画图法10. 列表法11. 排除法12. 染色法13. 构造法14. 配对法15. 列方程 ⑴方程 ⑵不定方程 ⑶不等方程{参考}

公务员考试单独数和重叠数

249 评论(14)

大力非水手

一、代入排除法 代入排除法就是从选项入手,代入某个选项后,如果不符合已知条件,或者推出矛盾,则可排除此选项的方法。代入排除法包括直接代入排除和选择性代入排除两种。其中,直接代入,就是把选项一个一个代入验证,直至得到符合题意的选项为止;选择性代入,是根据数的特性(奇偶性、整除特性、尾数特性、余数特性等)先筛选,再代入排除的方法。 代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行程问题、和差倍比问题等等。 二、特殊值法 特殊值法,就是在题目所给的范围内取一个恰当的特殊值直接代入,将复杂的问题简单化的方法。特殊值法必须选取满足题干的特殊数、特殊点、特殊函数、特殊数列或特殊图形代替一般的情况,并由此计算出结果,从而快速解题。 在公务员考试中,特殊值法常应用于和差倍比问题、行程问题、工程问题、浓度问题、利润问题、几何问题等。其中,在工程问题、浓度问题相关的比例问题时,一般将特殊值设为1;在涉及多个比例的问题时,有时为了将数值整数化,可以设特殊值为总量的最小公倍数。 在运用特殊值法时:确定这个特殊值不影响所求结果;数据应便于快速、准确计算,可尽量使计算结果为整数;结合其他方法灵活使用。 三、方程法 方程法是指将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式(组),通过求解未知数的数值,来解应用题的方法。因其为正向思维,思路简单,故不需要复杂的分析过程。 方程法应用较为广泛,公务员考试数学运算绝大部分题目,如行程问题、工程问题、盈亏问题、和差倍比问题、浓度问题、利润问题、年龄问题等均可以通过方程法来求解。 主要步骤:设未知量——找等量关系——列方程(组)——解方程(组)。 四、图解法 图解法就是利用图形来解决数学运算的方法。图解法简单直观,能够清楚表现出问题的过程变化。一般说来,图解法适用于绝大部分题型,尤其是在行程问题、年龄问题、容斥问题等强调分析过程的题型中运用得很广。 图解法运用的图形包括线段图、网状图/树状图、文氏图和表格等。 五、分合法 分合法常用的两种思路为分类讨论和整体法。 (一)分类讨论 分类讨论,是指当不能对问题所给的对象进行统一研究时,需要对研究对象按某个标准进行分类,逐类研究,最后将结论汇总得解的方法。在进行分类讨论时,要注意分类标准统一,分类情况不遗漏、不重复,不越级讨论。分类讨论与加法原理经常一起使用,一般是多种情况分类讨论以后,再利用加法原理求出总的情况数。 (二)整体法 整体法与分类讨论正好相反,它强调从整体上来把握变化,而不是拘泥于局部的处理。 整体法有两种表现形式: 1.将某一部分看成一个整体,在问题中总是一起考虑,而不单独求解; 2.不关心局部关系,只关心问题的整体情况,直接根据整体情况来考虑关系。这种形式经常用于平均数问题。 六、十字交叉法 十字交叉法是利用“交叉十字”来求两个部分混合后平均量的一种简便方法。十字交叉法一般只用于两个部分相关的平均值问题,且运用的前提已知总体平均值r。 七、极端法 极端法是指通过考虑问题的极端状态,探求解题方向或转化途径的一种常用方法。极端法一般适用于鸡兔同笼问题、对策分析类问题等。 在公务员考试中运用极端法的情况主要有分析极端状态和考虑极限图形与极限位置两种情况。一、分析极端状态先分析并找出问题的极限状态,再与题干条件相比较,作出相应调整,得出所求问题的解。公务员考试中的鸡兔同笼问题以及出现“至多”“至少”等字样的题,均可通过分析问题的极端状态来求解。二、考虑极限图形与极限位置。极限图形:主要是利用一些几何知识。例如,对于空间几何体,当表面积相同时,越趋近于球体的体积越大;同理,当体积相同时,越趋近于球体的表面积越小。极限位置:首先找到图形中满足条件的极端位置,再判断极端位置与题中所求之间的关系,进而求出题目答案。

325 评论(11)

拿一杯铁

言语理解与表达部分,总共40个题目,每个题目0.6分,共计24分; 2、数量关系部分,总共20个题目,每个题目1分,共计20分; 3、判断推理部分,总共35个题目,图形推理每个题目0.5分,定义判断每个题目0.8分,类比推理每个题目0.5分,逻辑判断每个题目0.8分,共计23.5分; 4、常识部分,总共25个题目,每个题目0.5分,共计12.5分; 5、资料分析部分,总共20个题目,每个题目1分,共计20分。申论总分100分,山东公务员的信息我都是在航博网查的,信息比较全,每天都有更新。

255 评论(11)

暖暖烛光2016

数字敏感性!很重要!几何图形的空间想象力!掌握运算的便捷方式!掌握公式!找真题的规律!比如和。差,乘积,商!或者是其他的关系的!掌握命题人出题的规律平时多练————到什么时候都是真理

331 评论(13)

小妖精87623

您好,中公教育为您服务。 公务员考试行测试卷上的容斥问题,从字面意思上来看,就是包含和排斥问题,是一种计数问题。在计数过程中,集合与集合之间有部分是重复包含的,但为了不重复计数,应从他们的和中扣除重复部分,这就是容斥问题。中公教育专家发现,考生在解决这类问题的过程中,一般会借助文氏图来解题。用一个大正方形表示全集-I,圆圈表示集合-A、B,交叉部分就是A∩B,A和B所包含的所有就是A∪B,在全集I内,但是不在集合A和B中的元素就是∅。这是我们在解题过程中常用的文氏图方法,可以使数量关系一目了然。这与我们之前学的逻辑课程中概念间的相互关系中的交叉关系有一定的联系,一起来复习下,概念间的相互关系,大致有五种关系:全同、全异、包含、包含于和交叉,每一种都可以用逻辑语言和文氏图来描述,比如说交叉关系,汽车和人,那他们交叉的部分是什么?机器人?那也就是变形金刚,有些汽车是人,有些人是汽车,这是对概念本身含义的交叉。那如果对概念所代表的数字进行交叉,就形成了数学运算中的容斥问题,同样可以用数学关系和文氏图来描述,比如说汽车有10辆,人有8人,变形金刚有2人,那这个变形金刚的2人既是汽车又是人。容斥问题题干的特点是:题干中会给出多个概念(集合),他们之间有交集关联。常用方法——文氏图法:核心是把重复数的次数变为只数1次,或者说把重叠的面积变成一层。做法:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,把遗漏的数目补上,使得计算结果既无遗漏又无重复。例题1:某班有若干名学生,每名学生都至少喜欢一种花,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,既喜欢玫瑰花又喜欢百合花的学生是4人,问全班共有多少人?A、28 B、30 C、32 D、34解析:全班总人数=18+16-4=30人。答案为B。例题2:某班有若干名学生,每名学生都至少喜欢一种花,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,喜欢棉花的有8人,其中同时喜欢玫瑰花和百合花的有6人,喜欢百合花和棉花的有4人,喜欢玫瑰花和棉花的有2人,三种花都喜欢的有1人,问全班共有多少人?A、29 B、30 C、31 D、34解析:根据文氏图法的原则和解答思路,全班共有人:18+16+8-6-4-2+1=31,答案为C。例题3:某班有若干名学生,其中喜欢玫瑰花的有18人,喜欢百合花的有16人,喜欢棉花的有8人,同时喜欢两种花的有4人,同时喜欢三种花的有2人,一种花都不喜欢的有3人,问全班共有多少人?解析:根据文氏图法的原则和解答思路,同时喜欢两种花的4人共加了两次,要减去一次,同时喜欢三种花的2人总共加了三次,所以要减去两次,最后把一种花都不喜欢的3人加起来,故全班共有人:18+16+8-4-2*2+3=37人。中公教育专家认为,在容斥问题中,文氏图法几乎可以大部分的题型,那么,解题原则就两点:一是重叠区域变为一层;二是做到不重不漏,这样在考试中就能做到万无一失了。如有疑问,欢迎向中公教育企业知道提问。

313 评论(14)

魔戒之love

楼主!你好!我空间!国家公务员考试行测试卷各部分分值:1、言语理解与表达部分,总共40个题目,每个题目0.6分,共计24分; 2、数量关系部分,总共20个题目,每个题目1分,共计20分; 3、判断推理部分,总共35个题目,图形推理每个题目0.5分,定义判断每个题目0.8分,类比推理每个题目0.5分,逻辑判断每个题目0.8分,共计23.5分; 4、常识部分,总共25个题目,每个题目0.5分,共计12.5分; 5、资料分析部分,总共20个题目,每个题目1分,共计20分。 这是2010年的国家公务员考试行测试卷各部分分值!祝你好运了

150 评论(9)

相关问答