青春冰帝
对于零基础的朋友,一开始入门可能不会太简单。因为需要掌握一门计算机的编程语言,大家都知道计算机编程语言有很多,比如:R,C++,JAVA等等。目前大多数机构都是教JAVA,我们都知道Java是目前使用最为广泛的网络编程语言之一。他容易学而且很好用,如果你学习过C++语言,你会觉得C++和Java很像,因为Java中许多基本语句的语法和C++一样,像常用的循环语句,控制语句等和C++几乎一样,其实Java和C++是两种完全不同的语言,Java只需理解一些基本的概念,就可以用它编写出适合于各种情况的应用程序。Java略去了运算符重载、多重继承等模糊的概念,C++中许多容易混淆的概念,有的被Java弃之不用了,或者以一种更清楚更容易理解的方式实现,因此Java语言相对是简单的。在学习Java的时候,我们一般需要学习这些课程: HTML&CSS&JS,java的基础,JDBC与数据库,JSP java web技术, jQuery与AJAX技术,SpringMVC、Mybatis、Hibernate等等。这些课程都能帮助我们更好了解Java,学会运用Java。
伪文艺的姑娘
大数据近年来越来越火,因为有了它,好像什么行业都能精准分析。但是,大数据本身的发展却很少有人分析。近日,国家信息中心、南海大数据应用研究院联合发布了《2017中国大数据发展报告》,首次把中国大数据本身的发展特点和存在的问题,全面呈现了出来。用大数据来了解大数据这份报告全面汇聚了国家发改委互联网大数据分析中心、国家信息中心、“一带一路”大数据中心所掌握的30多个种类,总计40多亿条相关数据,综合运用多种大数据分析方法,对我国大数据产业发展进行了全面分析。所以,称得上是用大数据来了解大数据。北京、广东、上海大数据发展位居前三报告显示,我国大数据发展总体处于起步阶段。但是从地域上看,就有意思了。国家信息中心信息化研究部副主任、南海大数据应用研究院院长于施洋指出:“从地域分布,从各个省来说,北京排第一,这个不足为怪,东部沿海地区这些省份排在前面,大家也都能够想象。但是在西南地区,四川、重庆、贵州这三个地方异军突起,是我们大数据发展的第二个增长极。”产业落后是地方大数据发展的突出短板具体来看,各省份大数据发展指数的排名中,贵州、重庆、四川,紧随东部沿海省份,全部排进了前十名,领先任何一个中部省份。分析认为,这主要是地方政策引领的结果。这三个西部省市,早早都把大数据产业的发展作为重点工程来打造。对于这种“弯道超车”现象,国家行政学院教授汪玉凯建议,这些地方下一步可以重点考虑产业落地问题:“它们是首先抓住了一个概念,然后占了一个先机。但是相对能够落地的产业应用还是比较少的,这是它们的软肋。所以我认为,你们一定要注意应用,要打造你的优势。”人才短缺问题日益突出报告指出,数据管理环节漏洞较多,是大数据发展面临的首要问题,包括由此引发的运营成本过高、资源利用率低、应用部署过于复杂等难点。而我们更关注的是另一大问题。我们会发现,大数据领域里数据是有了,但是能驾驭这些数据的人是极其匮乏的。比如说大数据的专业人才方面,现在分析类的人才,市场是供不应求,缺口非常大,而项目管理类的人才,供给又远远大于需求,所以结构上还不平衡。高端的人才奇缺,这是最突出的问题。”发展大数据要谨防人才“眼高手低”大数据的核心就是数据的抓取与分析,而分析环节,目前离不开人工设置变量,建立模型。所谓“差之毫厘,谬之千里”,大数据分析对人才的要求很高。但首份大数据发展报告却揭示,我国大数据人才能搞管理的不少,真正能做分析的却远远不够,这是典型的“眼高手低”,势必伤害大数据产业的长远发展。人才短板可以从教育方面着手弥补,探索新的人才培养模式。比如,将高校大数据系列课程分为理论教学和技术教学两方面;比如社会上优质的专注大数据人才培养机构等多方面进行。
优优妈妈0509
不难学的,大数据开发是大数据职业发展方向之一,另外一个方向是大数据分析。从工作内容上来说,大数据开发主要是负责大数据挖掘,大数据清洗处理,大数据建模等工作,主要是负责大规模数据的处理和应用,工作主要以开发为主,与大数据可视化分析工程师相互配合,从数据中挖掘出价值,为企业业务发展提供支持
jason86122
大数据从事的是开源工作,更倾向于“研发”,能够重新激起程序员研发程序的热情,职业生涯有了新的追求,这意味着大数据会成为值得程序员长期奋斗不断突破的工作;其次,由于大数据属新兴领域,专业人才比较缺乏,高端人才更是企业争抢的对象,薪资上升容易,职业发展潜力巨大。二、大数据人才薪资如何?做技术编程也是不错的,不过目前大数据是个趋势,稍微有实力点的企业都在上大数据项目,而Hadoop本身又是编程开发的,再加上Hadoop工程师普遍比纯技术编程开发要高30%以上,所以有很多搞技术编程的都在往hadoop大数据方向转。做技术编程的人已经比较多了,很多人工作4~5年月薪也难上2万,能上万的更是寥寥。但Hadoop很多人只1年经验就拿2万以上了。所以很多现在待遇还不错的人也在学大数据,主要也是考虑未来发展天花板的问题。大数据工程师的工作难度大吗?首先我们先了解一下大数据工程师们需要处理哪些工作,根据工作内容,大家就能够在心中有个基本的概念。在工作岗位上,大数据工程师需要分析优化系统,解决系统运行中的稳定性问题;负责大数据基础设施框架的维护及二次开发,如kafka、flink、hbase等,负责进行数据采集、处理、分析、统计、挖掘工作等等。大数据工程师的工作累吗?除开以上工作之外,大数据工程师还需要负责数据仓库、数据集市建设,通过离线、实时方式接入各数据源数据;根据业务需求对数据、清洗、处理、计算,建模等工作,负责 即时查询工具、固定报表、运营数据产品、Dashboard等产品的设计、研发及应用等等。
吃客令狐冲
如果要问难不难的话,无论是大数据还是其他什么,只要你想学好的话应该都不会太简单。并且大数据入门不像学一门编程语言,自学一段时间就OK了。大数据是需要站在编程的基础上学习的。如果你是零基础但是又真心的想要学习大数据的话,建议你可以从以下几个方面去入手,首先就是第一步:要进行大数据开发语言及其他基础的学习。第二步:学习理论及核心技术。第三步:真实项目案例实战。1、编程语言的学习对于零基础的同学,一开始入门可能不会太简单。因为需要掌握一门计算机的编程语言,大家都知道计算机编程语言有很多,比如:R,C++,JAVA等等。建议从Java入手,容易学而且很好用,Java只需理解一些基本的概念,就可以用它编写出适合于各种情况的应用程序。现在一般也都是从JAVA开始学起,这相当于也是一个基础。2、大数据相关技术的学习学完了编程语言之后,一般就可以进行大数据部分的学习了。一般来说,学习大数据部分的时间比学习Java的时间要更长,JAVA算作学习大数据要学习的一部分,除此之外学习大数据还需要学习其他相关类型的数据知识。大数据部分,包括Hadoop 、Spark、Storm开发、Hive 数据库、Linux 操作系统等知识,还要熟悉大数据处理和分析技术。如果要完整的学习大数据的话,这些都是必不可少的。3、项目实战阶段学习任何一门技术,除了理论知识,项目的实战训练也是非常重要的,进行一些实际项目的操作练手,可以帮助我们更好的理解所学的内容,同时对于相关知识也能加强记忆,在今后的运用中,也可以更快的上手,对于相关知识该怎么用也有了经验。在项目实战中,遇到问题最好积极动手记录下来,这样才能更好的去解决你遇到的问题。一般来说,零基础学习大数据大概就是分为这3个阶段,学习大数据不是件容易的事,但是只要你能多努力,积极地解决自己的疑惑,多练手,相信你一定可以掌握这门技术。
优质工程师考试问答知识库