• 回答数

    4

  • 浏览数

    176

请叫我姚锅
首页 > 工程师考试 > 报考数据挖掘工程师要求

4个回答 默认排序
  • 默认排序
  • 按时间排序

好奇怪的样子哦

已采纳

数据挖掘工程师需要具备数学及统计学相关的背景、计算机编码能力、对特定应用领域或行业的知识。1.缺乏理论背景的数据人员,更容易进入一个技能上的危险区域(Danger Zone)—一些数字,按照不一样的数据模型和算法总能鼓捣出一些结果来,只有具备基础的理论知识,才能真正理解模型、复用模型并且创新模型,来解决实际问题。2.实际的开发能力和大规模的数据处理能力是成为大数据工程师的一些必备要素。因为许多数据的价值取材于挖掘的过程,你不得不亲自动手才能发现金子的价值。即便在某些团队中,大数据工程师的责任主要以商业分析为主。3.大数据工程师这个角色非常重要的一点是,不能够脱离市场,因为大数据只有和特定领域的应用结在一起才能产生价值。所以,在某个或多个垂直行业的经验能为应聘者积累对行业的认知,对于之后从事大数据工程师有很大帮助。关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

报考数据挖掘工程师要求

220 评论(14)

熊猫盖盖

数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:1、简介如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。2、关于数据挖掘项目这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:他一开始是如何描述这个项目的项目持续了多长时间这个项目的关键问题是什么问题是如何得到解决的在数据挖掘项目中最为困难的阶段是什么最有趣的阶段又是什么在他眼里,客户是怎么样的团队的其他成员又是如何表现的从中获得了什么样的经验在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。3、关于数据挖掘的流程考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。4、解决问题软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。5、收尾在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。

225 评论(10)

璐璐308738

一般来说需要具备以下技能:1、编程/统计语言2、操作系统3、大数据处理框架4、数据库知识5、基本统计知识6、数据结构与算法7、机器学习/深度学习算法8、自然语言处理。1、扎实的基础工程能力倾向于计算机底层系统研究的Java、C++语言是企业招聘过程中非常看重的,当然这并非唯一标准。技术团队leader,首先就会测试候选人的基础工程能力,也就是代码能力,这意味着你的工作能力至少满足基本需求。2、算法和数据挖掘理论由于行业起步比较晚,很多时候候选人并没有算法和数据挖掘的实践经验。因此,对算法和数据挖掘理论知识的掌握和应用就成为了招聘当中的重要考察因素。3、优秀的基础职业素养学习能力、自我驱动力、逻辑分析能力等基础职业素养,也是在招聘当中重要的参考因素。关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

326 评论(9)

密室娱乐小伙伴

数据挖掘工程师可以通过学习考取两个证书,证书目前主流有两个,一个是CDA,另一个是CPDA。全名是数据分析师,主要是数据分析方法、技术和软件操作为主。它包括:1、统计概率基础;2、数据分析模型方法;3、软件、工具的运用。如果这些技术不会,也不可能会操作数据分析。所以,CDA主要是针对数据分析师必不可少的技术性培训,是数据的获取、储存、整理、清洗、分析,检验到结果报告一个整体的过程,以及数据分析部分软件的操作。全名叫项目数据分析师,国内出现最早的数据分析培训,原先是信息产业部在组织,目前由中商联数据分析专业委员会和工信部教育与考试中心主管,内容主要针对的是基于企业在投资、经营、管理领域的数据分析,类似于MBA课程。课程包括《数据分析基础》、《战略管理》、《量化投资》、《量化经营》等,覆盖企业运营的每个环节,以数据分析的方法来进行的管理、经营、投资的分析,应该说企业的管理层适合学习CPDA来进行管理层面的分析和指导。关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

118 评论(10)

相关问答